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I ntroducti on

Differential geometry is that branch of mathematics which 
investigates geometric forms, primarily curves and surfaces, but 
also families of curves and surfaces, using methods of infinitesimal 
analysis. It is characteristic of differential geometry that it studies, 
above all, properties of curves and surfaces “in the small,” i.e. the 
properties of arbitrarily small pieces of curves and surfaces.

Differential geometry arose and developed in close relationship 
with analysis which itself grew, to a significant degree, out of geo­
metric problems. Many geometric concepts preceded the corre­
sponding ideas in analysis. Thus, for example, the notion of a 
tangent preceded the concept of a derivative and the idea of area 
and volume preceded that of an integral.

The origin of differential geometry goes back to the first half of 
the eighteenth century and is associated with the names of Euler 
and Monge. The first comprehensive work on the theory of surfaces 
was Monge’s Applications of Analysis to Geometry, 1807.

In 1827 Gauss published the work General Investigations Con­
cerning Curved Surfaces which forms the basis of the theory of 
surfaces in its modern form. Since that time, differential geometry 
ceased being only an application of analysis and assumed an in­
dependent role in mathematics.

The discovery of noneuclidean geometry by Lobachevsky played 
an enormous role in the development of all of geometry, including 
differential geometry. Thus, in 1854 Riemann, by his lectures on 
The Hypotheses which lie at the Foundations of Geometry, established 
the foundations of so-called Riemannian geometry, which in its 
applications to multi-dimensional manifolds finds itself in the same 
relationship to the geometry of ^-dimensional euclidean space as 
intrinsic geometry of an arbitrary surface to euclidean geometry in 
the plane.

Klein's group-theoretic point of view expounded in his Erlangen 
Program of 1872 was developed by Cartan in respect to applications 
to differential geometry; he accomplished this by constructing a 
theory of surfaces with projective and affine connection.



IN T R O D U C T IO N IX

In Russia, the school of differential geometry was founded by 
Minding and Peterson whose basic investigations arc devoted to 
questions of the bending of surfaces. These investigations were 
continued in the works of many Russian, and later Soviet, geometers.

The lectures of the author on differential geometry in the 
Physics-Mathematics Department of the Kharkov State University 
form the basic material of the present book. The author’s aim is to 
present a rigorous discussion of the fundamentals of differential 
geometry and of the methods of investigation which are character­
istic of this branch of mathematics, without disturbing well- 
established tradition in the process. A large amount of factual 
material concerning differential geometry has been relegated to 
exercises and problems, the solution of which ought to be considered 
obligatory for serious students of geometry.





PART ONE

T H E O R Y  OF C U R V E S

C h a p t e r  I 

TH E CONCEPT OF CURVE

A curve is one of the fundamental objects considered in differ­
ential geometry. In this chapter we shall discuss the concept of 
curve to the extent required in the remainder of the book.

§ 1. E lem entary curve. We shall preface the definition of an 
elementary curve with some facts about mappings of an arbitrary 
set of points in (three-dimensional Euclidean) space.

Suppose M  is an arbitrary set of points in space. We say that / is 
a given mapping of the set M  into space if each point X  in the set M 
is assigned some point f(X) in space. The point f(X) in space is called 
the image, ot the point X. The set of points f{M), consisting of the 
images of all the points of the set M, is called the image of the set M.

A mapping / of the set M  into space is said to be one-to-one and 
bicontinuous (in short, topological) if the following three conditions 
are satisfied:

1) The images of distinct points are distinct;
2) If X  is an arbitrary point of the set M  and X n is a sequence of 

points in M  which converges to X, then the sequence of points 
f(X n), which are the images of the X n, converges, and moreover, it 
converges to the point f{X) which is the image of the point X ;

3) If f(X) is an arbitrary point of the set f(M) and f{Xn) is a 
sequence in f(M) which converges to f(X), then the sequence of 
points X n, corresponding to the f{Xn), converges, and moreover, it 
converges to the point X.

If, for a mapping / of the set M, only the first condition is satis­
fied then the mapping f is said to be one-to-one; if only the second 
condition is satisfied, then /  is said to be continuous.

We shall now define an elementary curve.
We shall say that a set y of points in space is an elementary curve 

if this set is the image of an open interval on the real line under a
Pogorelov, Diff. G eom etry
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one-to-one and bicontinuous mapping of the open interval into 
space;

Suppose y is an elementary curve and let a < t < b be an open 
interval, the image of which is a curve under the mapping /. Let 
fi(t), fz{t), and f3(t) be the coordinates of the point on the curve which 
corresponds to the point t on the open interval. The system of 
equations

x = f\(t), y =  f2(t), z =  f3(t)

are called the equations of the curve y in the parametric form.
A curve is defined uniquely by its equations in the parametric 

form. In this connection, then, we may speak about the definition 
of a curve by its equations.

§ 2. Simple curve. A set G of points in space is said to be open if 
for every point A' of this set we can find a number e >  0 such that 
all the points in space whose distances from X  are less than e also 
belong to G. Obviously, a set consisting of an arbitrary number of 
open sets is open.

A neighborhood of the point X  in space is any open set containing 
this point.

A set M  of points in space is said to be connected if there do not 
exist two open sets G' and G" which decompose the set M  into two 
subsets M' and M", one of which belongs only to G' and the other 
only to G*.

We shall now define a simple curve.
A set y of points in space will be called a simple curve if this set is 

connected and each of its points X  has a neighborhood N  such that 
the part of y lying in N  is an elementary curve.

The structure of a simple curve in the large is clarified by the 
following theorem.

Theorem. The image of an open interval or circumference under a 
one-to-one and bicontinuous mapping into space is a simple curve.

Conversely, a simple curve is the image of an open interval or 
circumference under a one-to-one and bicontinuous mapping into 
space. Briefly, this can be expressed as follows: a simple curve is 
homcomorphic to either an open interval or to a circumference.

We shall not set down the proof of this theorem. We shall only 
remark that the property of a simple curve of being homeomorphic
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to an open interval or a circumference, indicated in the theorem, 
completely characterizes the curve and, consequently, a simple 
curve can be defined by means of this property.

A simple curve which is homeomorphic to a circumference is said 
to be closed.

We shall define the concept of a neighborhood of a point on a 
simple curve.

A neighborhood of a point X  on a simple curve y is the common 
part of the curve y and some neighborhood of the point X  in space. 
According to the definition, each point of a simple curve has a 
neighborhood which is an elementary curve. In the sequel, when we 
talk about a neighborhood of a point on a curve, we shall have in 
mind such an elementary neighborhood.

Suppose a simple curve y is the image of an open interval or a 
circumference g under a one-to-one and bicontinuous mapping /. 
Let X  be an arbitrary point of g and let co be any neighborhood of X. 
Then the image of co under the mapping /  is a neighborhood of the 
point f(X) on the curve y. Conversely, any neighborhood of the 
point f(X) can be obtained in this manner.

The proof of this assertion is straightforward. The image of co 
under the mapping / is an elementary curve, inasmuch as co is an 
open interval or an open arc of a circumference, and / is one-to-one 
and bicontinuous.

In virtue of the bicontinuity of the mapping /, a sphere o(Y), 
which does not contain any other points of the curve y except the 
points f(co), can be described about each point f(Y) belonging to 
f(co). The set G consisting of all such open spheres o(Y) is open. This 
open set contains only those points of the curve y which belong to 
the elementary curve /(to). According to the definition, f(co) is a 
neighborhood of the point f(X) on the curve. This proves the first part 
of the assertion.

We shall now prove the second part. Suppose /(«) is a neigh­
borhood of the point f(X) on the curve y. Since f(co) is an ele­
mentary curve, it is the image of an open interval a <  r  <  ft 
under a one-to-one and bicontinuous mapping cp. Suppose for de­
finiteness that g is the open interval a <  t <  b. Each point r  is 
assigned a definite point on the curve y, and to the latter point there 
corresponds a definite point t on the interval. Thus, t may be con­
sidered as a function of t, t = 2(t).
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The function /(r) establishes a one-to-one and bicontinuous 
mapping of the open interval a <  r <  onto the open interval 
a <  t <  b. The image of the interval a <  r  <  ft is the set &>.

We shall show that co is an open interval. Because of the conti­
nuity of the function t(r), if the points t' and t" belong to the set co 
then the closed interval t' <, t < t" also belongs to <w; this is so 
because a continuous function t(r) which assumes the values t' and 
t" also takes on all intermediate values. Thus, co is an interval. We 
shall show that its endpoints do not belong to co. In fact, a neigh­
borhood of the point f(X) on the curve y is a part of the curve be­
longing to some open set G. If X  belongs to co, i.e. if the image of X  
belongs to G, then in virtue of the continuity of the mapping / the 
images of all points on the interval g which are sufficiently close to 
X  also belong to G. It follows from this that co is an open set and 
hence it is an open interval. This proves the second part of the 
assertion.

§ 3. General curve. A mapping / of a set M  into space is said to be 
locally one-to-one if each of the points of M  has a neighborhood in 
which the mapping / is one-to-one.

We now define a general curve.
A set y of points in space will be called a general curve if this set is 

the image of a simple curve under a continuous and locally one-to- 
one mapping of it into space.

We shall say that the mapping /i of a simple curve y i and the 
mapping /2 of a simple curve y^ define one and the same general 
curve y if a one-to-one and bicontinuous correspondence can be 
established between the points of the curves y i and y 2 where the images 
of corresponding points on these curves coincide on the curve y.

In order to clarify the second part of the above definition, we 
shall introduce an example. A general curve is given in Fig. 1. This

curve can be thought of as the 
image of a circumference under 
a one-to-one and continuous 
mapping in two distinct ways, 
which from the point of view 
of the given definition, yield 
distinct curves.Graphically, one 
may think of them as follows.Fig. 1
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Suppose a point moves on a circumference. Then its image moves 
along the curve. In this connection, the image-point, running along 
the curve, may assume successive^ the positions 1,2, 3, 4, 2, 5, but 
it can also trace out the curve in the order 1, 2, 4, 3, 2, 5. Mappings, 
corresponding to these courses, define distinct general curves, 
although as point sets they coincide.

Suppose a general curve y is the im’age under a one-to-one and bi- 
continuous mapping / of the simple curve y into space. We shall say 
that a sequence of points f[Xn) on the curve y converges to the 
point f(X), if the sequence of points X n on the simple curve y con­
verges to the point X. A neighborhood of the point f(X) on the 
curve y is the image of any neighborhood of the point X  on the 
curve y under the mapping /.

Although convergent sequences of points on a general curve y 
and neighborhoods of points on y are defined as images of con­
vergent sequences and neighborhoods on a simple curve under 
some definite mapping /, these concepts do not, however, depend on 
the particular character of the mapping / in the sense that, starting 
with another mapping /', another simple curve y , defining the same 
general curve y, we arrive at the same convergent sequences and 
the same neighborhoods of points on this curve.

This follows from the possibility of establishing a one-to-one and 
bicontinuous correspondence between the points of the simple 
curves y and y where the images of corresponding points on these 
curves under the mappings / and /' coincide. The images of corre­
sponding convergent sequences on the curves y and y define the 
same convergent sequence on the curve y. The images of corre­
sponding neighborhoods of corresponding points on the curves y and 
y define the same neighborhood of the point on the general 
curve.

If we consider a simple curve, in particular an elementary curve, 
as a general curve, then the concept of convergence of points on it is 
equivalent to the concept of geometric convergence, and the con­
cept of neighborhood is equivalent to the concept of geometric 
neighborhood, introduced for simple curves.

Since a general curve is the image of a simple curve under a 
locally one-to-one and continuous mapping, and a simple curve is 
the image of an open interval or a circumference under a one-to-one 
and bicontinuous mapping, a general curve is the image of an open
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interval or a circumference under a locally one-to-one and continu­
ous mapping. Such a mapping can be given analytically by means of 
the equations

x =  y = hit), 2 =  W)>

where f\, fz, fz are functions defined on the open interval a <  t <  b 
or on the half-open interval a < t <  b. This system of equations are 
called the equations of the curve in the parametric form.

§ 4. Regular curve. Analytic definition of a curve. It follows 
from the definition of a general curve that there exists a neighbor­
hood for each of its points which is an elementary curve.

We shall say that the curve y is regular (A-times differentiable) if 
each of the points of this curve has a neighborhood which permits a 
regular parametrization, i.e. the possibility of giving its equations 
in the parametric form

x = h{t), y = h{t), z =  fait),

where /1, fz, h  are regular (&-times continuously differentiable) 
functions. For k =  1, the curve is said to be smooth.

A curve is said to be analytic if it permits of an analytic para­
metrization (the functions /1, fz, fz are analytic) in a sufficiently 
small neighborhood of each of its points.

In the sequel we shall consider regular curves exclusively.
As was shown in the preceding section, a curve may be given by 

means of equations in the parametric form

% =  xit), y =  yit), z =  zit),

where xty), yit), zit) are certain functions defined in some open inter­
val a <  t <  b or half-open interval a < t <  b.

The question naturally arises, when does the system of equations

x - xit), y =  yit), z =  zit) (« <  t <  b)

define a regular curve, i.e. when can these equations be considered 
as the equations of some curve ? The answer to this question is given 
in many cases by the following theorem.

Theorem. I f xit), yit) and zit) are regular functions, satisfying the 
condition

x'2it) +  y'2(2) +  z'*it) > 0  ia < t< b ) ,
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then the system of equations

x =  x(t), y = y{t), 7 — z(t) (a <  t < b)

are the equations of some curve y. 1 his curve is the image of the open 
interval a < t <  b under a continuous and locally one-to-one mapping 
which assigns to the point t on the open interval the point in space with 
coordinates x(t), y(t), z(t).

Obviously, only the assertion about the local one-to-oneness of 
the indicated mapping is necessary in the proof. We shall prove this 
assertion.

If the assertion is not true, then there exists a to in an arbitrarily 
small neighborhood of which we can find t\ and t2 (̂ i ^  t2) such that

x(h) — x(t2) =  0, y{ti) — y(t2) =  0, z(h) — z{t2) =  0.
»•

By the mean value theorem we obtain from this that

=  0, y'{&2) =  0, z'(#3) =  0,

where #1, ■&2l $3 are between t\ and t2. Since ti and t2 arc arbitrarily 
close to to, by the continuity of the functions x'(t), y'{t), and z'(t), 
we have

x'{to) = 0, y'(/o) =  0, z'(to) = 0

and, consequently,

x'*(to) +  y'Z(to) +  z'Z(to) =  0.

We have therefore arrived at a contradiction. This completes the 
proof of the assertion.

Some simple curves permit a parametrization of the form

x = t, y =  <p(t), z - - f(t) (a < t <  b)

for a suitable choice of the x, y, z coordinate axes. The equations of 
such a curve can be written in the equivalent form

y = q>{x), z — f(x) (a < x < b).

Theorem. Suppose y is a regular curve and that

x =  f\{t), y =  h(t), z =  f3{t) (a < t  <b)

is its regular parametrization in a neighborhood of the point {xq, y0, ô), 
corresponding to t =  to- Suppose f\'{t) ^  0 at this point. Then in a
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sufficiently small neighborhood of the point to the curve y can be de­
fined by means of the equations

y =  <p(x) z = y>{x),

where q> and ip are regular functions of x.
In fact, according to the implicit function theorem there exists a 

regular function %{x)> cciual to to for x = xq and satisfying the 
equation

* =  / i(zW)
for all x near xq. Differentiating this identity and evaluating for 
x =  xo we find 1 =  fi(to)x'{xo)- It follows that x'ixo) 0- Thus, the 
function xix) is monotonic in a neighborhood of xo and consequently, 
for sufficiently small d the mapping of the open interval xq — 6 <
<  x <  xo +  <5 onto the £-axis, defined by the equation t — x{x), 
will be one-to-one and bicontinuous.

It follows from this that in the neighborhood x(xo — d) < t <
<  xixo +  b) the curve y can be defined by the equations

y =  /2(x(x))> - =  /3(xW) (*0 — <5 <  * <  *0 +  <5).
This completes the proof of the theorem.

§ 5. On the implicit representation of a curve. For simplicity 
of presentation, the proofs of the fundamental propositions of this 
section will be carried out for the case of plane curves.

The corresponding propositions for space curves will be stated 
without proof.

A curve is said to be a plane curve if all of its points lie in a plane. 
We shall assume that this plane is the x, y-plane.

We shall say that a plane curve is defined by the equation
cp{x, y) = 0,

expressing by this only the fact that the coordinates of points on 
the curve satisfy the given equation. In this connection, there may 
exist points in the plane which satisfy the given equation but do not 
belong to the curve.

Thus, defining a curve by means of the equation q>(x, y) =  0, 
in distinction to the parametric definition considered above, is 
incomplete. Nonetheless, some questions concerning the curve can 
be answered if we have even such an incomplete definition of it.
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In the consideration of curves, defined by equations in the im­
plicit form, an important role is played by the following theorem.

Theorem 1. Suppose <p(x, y) is a regular function of the arguments 
x, y. Suppose M is the set of points in the x, y-plane satisfying the 
equation <p(x,y) = 0 ; let (xo, yo) he a point in this set at which 
(px2 -\- <py2 ^  0. Then the point {xq, yo) has a neighborhood such that 
all the points of the set M belonging m it form a regular elementary 
curve.

Proof. Suppose, for definiteness, that <py ^  0 at the point (xq, yo). 
By the implicit function theorem, there exist positive numbers d 
and €, and a regular function y>(x), defined in the interval Xo — d < 
< x <  xo +  d, such that all the points (x, y(x)), xo—d<x<xoJrd 
satisfy the equation (p(x, y) — 0, where these points are the only 
points of the rectangle xo — <5 <  x <  xq -f- 6, yo — e <  y <  yo +  e 
satisfying the equation qj(x, y) =  0. The elementary curve, about 
which we are talking in the theorem, is defined by means of the 
equation

y =  f(x), (x0 — S <  x < xo -f (5).

This proves the theorem.
The corresponding theorem for space curves consists in the fol­

lowing.
Suppose <p(x, y, z) and y>(x, y, z) are regular functions of the argu­

ments x, y, z. Suppose M is the set of points in space, satisfying the 
equations

<p{x, y, )̂ =  0, y>(x, y, z) = 0,

and (xo, yo, zq) is a point in this set at which the rank of the matrix

{'Px (pv <Pz\
\Vx Wv VW

equals two. Then the point (.vo, yo, *o) has a neighborhood such that all 
the points of the set M belonging to it form a regular elementary curve.

The proof of this theorem is also based on the application of the 
implicit function theorem and does not differ fundamentally from 
the proof of the corresponding theorem for plane curves.

§ 6. Singular points on regular plane curves. Suppose y is a 
regular plane curve and P is a point on y.

A point P on the curve y is called a regular point if the curve
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permits a regular parametrization x =  x(t), y = y{t) in a neigh­
borhood of this point satisfying the condition x'2 +  y '2 ^  0 at the 
point P. But if such a pararm trization does not exist, then P  is 
called a singular point of the curve.

Thus, x' = y' =  0 at a singular point for an arbitrary regular 
parametrization of a regular curve.

We now consider in more detail the question of singular points 
on plane analytic curves.

Lemma. Suppose y is an analytic curve and that 0 is a point on y. 
Then with a suitable choice of coordinate axes the curve can be para­
metrized so that its equations will have the form

x =  a\tni,
y =  b\tmi +  bit™2 +  ■ • •, »i <  mi

in a neighborhood of the point 0.
Proof. We take the point 0  as the origin of coordinates. Suppose 

x = x(t), y =  y(t) is any analytic parametrization of the curve. 
Without loss of generality, we may assume that the point 0  corre­
sponds to the value / =  0 of the parameter.

Suppose the first nonzero derivatives of the functions x(t) and 
y(t) at the point t — 0 have orders «i and mi respectively, where 
Mi <  mi. (If Mi >  mi, the roles of x and y can be interchanged.)

We introduce a new parameter s related to t by means of the 
equation

\ x n'{0)tni)
For such a choice of the parameter, the equations of the curve y 
have the form

x =  ais"1,
y =  6ismi +  &2sm2 H -

in a neighborhood of the point 0, which was to be proved.
Theorem. Suppose an analytic curve is defined by means of the 

equations
x = aitni,
y — bitm* -f M 7"2 mi <  mi

in a neighborhood of the point 0. Then a necessary and sufficient 
condition that the point 0 be a singular point on the curve is that at 
least one of the m* not be divisible by m.
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Proof. Necessity. We note first of all that all the mu and nx 
cannot be even, since then x(t) =  x(— t), y(t) = y{— t) for arbi­
trarily small t, i.e. the one-to-onen' ss condition on the values of the 
mapping in an arbitrarily small neighborhood of the point t =  0 is 
invalidated.

Suppose all the m* are multiples of nx (where nx, obviously, is odd). 
We introduce the parameter s =  tni to replace t. Then the equation 
of the curve in a neighborhood of the point 0  assumes the form

x = axs,
y = b\skl +  b2ski -f- • • •.

Obviously, the point 0  corresponding to the value s =  0 of the 
parameter is a regular point on the curve.

Sufficiency. Suppose at least one of the is not divisible by nx. 
We shall show that the point 0  is a singular point. If the point 0  is 
a regular point, then in a neighborhood of 0  the curve can be 
defined by either the equation y = (p(x) (cp(x) is an analytic function) 
or by the equation x = ip(y) (where y> is an analytic function).

Fig. 2

Since yjx tends to a finite limit as t -> 0, the curve can indeed be 
defined by the equation

y =  <p{x) = c\x +  C2X2 -|-

in a neighborhood of the point 0. Substituting x = x(t) and y = y(t) 
into this equation, we obtain the identity

bit™1 +  h t”* +  • • • =  cxaitni +  c2ai2t2ni +  • • •.

It follows from this that all the mu are multiples of nx. We have
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therefore arrived at a contradiction. This completes the proof of the 
theorem.

Remark. If the point 0  is a ingular point, where n\ and mi are 
even, then it is called a turning point of the second kind. A curve has 
the form shown in Fig. 2a in a neighborhood of this point.

If the point 0  is singular, where mi is not divisible by n\, and n\ is 
even and nti is odd, then 0  is called a turning point of the first kind. 
The form of a curve in a neighborhood of such a singular point is 
shown in Fig. 2b.

We have seen that the answer to the question whether a point on 
a curve is a singular point or a regular point, is equivalent to in­
vestigating some special parametrization of the curve. In order to 
obtain this parametrization it is sufficient to know how to expand 
the functions x(t) and y(t) of an arbitrary analytic definition of the 
curve in a power scries of analytic functions

=  /  _ Y /ni
S \ x n'(0)t,l'J  '

The Biirman-Lagrangc theorem known from the theory of 
analytic functions asserts that these expansions can be found.

In conclusion, we point out a simple sufficiency criterion that the 
point 0  on the curve y be a singular point.

Theorem. Suppose the analytic curve y is defined by means of the 
equations

x = x{t), y = y{t)

ivhere x(t) and y(t) are analytic functions of the parameter t in a neigh­
borhood of the point 0. Suppose the first nonzero derivatives of the 
functions x(t) and y(t) have orders n\ and m\ respectively, where 
n\ <  m\.

Then the point 0 will be a singular point if m\ is not divisible by n\. 
Here, the point 0 will be a turning point of the second kind if both n\ 
and mi are even, and a turning point of the first kind if m is even and 
mi is odd.

§ 7. Singular points on analytic curves, defined by equa­
tions in the implicit form. Suppose a plane analytic curve y is 
defined by means of the equation q>(x, y) = 0, where <p(x, y) is an 
analytic function of the variables x and y.
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If <Px2 +  <Py2 ^  0 at the point O(xo, yo) on the curve y, then this 
point on the curve is a regular point as was shown in § 5. Thus, the 
only points on the curve which cai be singular points are those at 
which tpx = <p.y = 0.

Without loss of generality, we may assume that the point 0  is the 
origin of coordinates. In a neighborhood of the point 0, the curve y 
permits a parametrization of the form

x =  a\tni,
y =  bit™1 +  b2im2 +  • ■ ■,

where one may assume that n i <  mi. Otherwise, we can interchange 
the x and y axes. In order to determine whether the point 0  is a 
singular point of the curve and to explain the nature of the singu­
larity at this point, it is sufficient to know the exponents m, 
mi, m2,

In order to determine these exponents, we make use of the iden­
tity

?>(*(*). y(9) =  °-

The extent of this course does not permit us to stop to consider 
this question in more detail, and we shall restrict ourselves to the 
following remarks. The exponents «], mi, m2, • • • are not defined 
uniquely by the above identity. This is due not only to the fact that 
going over to a new variable s according to the formula t =  sk does 
not change the character of the parametrization but also to the fact 
that in the general case several analytic curves which are geo­
metrically different, even in an arbitrarily small neighborhood of the 
point 0, will satisfy the equation <p(x, y) = 0. In this connection, 
the character of the singularity of the point 0  on various curves will 
be distinct. The investigation of the singular point 0  for a curve, 
defined by the equation <p(x, y) =  0, must be understood in the 
sense of investigating the nature of the singularity of the point 0  
with respect to every analytic curve, defined in a neighborhood of 
the point 0  by means of the equation <p(x, y) = 0.

We shall now consider an example.
Suppose the expansion of the function rp(x, y) in powers of x, y 

begins with terms of the second degree

<p{x, y) =  a20x2 +  anxy +  a02y2 +  ■ • •.
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We shall distinguish three cases:

a) «2o«o2 — >  O- b) «20«02 — i« n 2 <  0;
C) £ 20^02 -  i « n 2 =  0 .

By means of a rotation of axes, we can attain the case where the 
term containing xy will be absent in the expansion of the function 
tp(x, y) in a power series.

Substituting x{t) and y(t) into the expansion of the function 
<p(x, y) we obtain an identity in t. For n\ <  m\, the lowest power of t, 
equal to 2n\, has only one term, namely a%oai2t2ni. It follows that 
«20 =  0, which is impossible either in the first or in the second case. 
It remains to assume that n\ =  m\. Then in the first two cases, 
the terms a20«i2̂ 2ni and ao2&i2̂2nt‘ have the lowest degree. This is 
also impossible in the first case, since «20 and «02 have the same 
sign, and it follows from the identity that «20«i2 +  «02̂ i2 =  0.

Thus, in the first case there does not exist an analytic curve which 
satisfies the equation tp{x, y) =  0 and contains the point 0. It turns 
out, in this case, that in a sufficiently small neighborhood of the 
point 0  no points exist which are different from 0  and satisfy the 
equation <p(x, y) =  0. When the curve is defined as the geometric 
locus of points satisfying the equation <p(x, y) =  0, such a point is 
called an isolated singular point.

In the second case, we obtain two systems of values for ai and b\, 
with accuracy up to within an unessential factor,

ai =  V/ |ao2|, b i  =  V |«2o|;
«1 =  V̂ |fl02|, b\ =  — V|02O|-

Now if we begin with any system of values for «i and b\, and n\= m \, 
then the exponents w* and the coefficients bk are already uniquely 
determined by the identity <p(x(t), y(t)) = 0. It is not difficult to 
prove that all the exponents are multiples of ni = mi. Thus, in 
the second case there exist two analytic curves, geometrically 
distinct in an arbitrarily small neighborhood of the point 0. The 
point 0  is a regular point for these curves inasmuch as all w* are 
divisible by n\. When the curve is defined as the geometric locus of 
points satisfying the equation <p(x, y) =  0, the point 0  is still con­
sidered as a singular point in the case under consideration, and it 
is called a nodal point.

Finally, we consider the third case. In this case we may assume



Chapter I, § 8 15

that «20 =  0 since «20«02 =  0. The expansion of the function <p(x, y) 
has the form

<p(x, y) =  a02y2 +  «30*3 +  • • • •
We shall assume that £30 #  0. This corresponds in the general case 
to the fact that the forms <p2 =  fl20*2+«ii*y ■+ «02y2 and 9J3 =  
(I30X3 +  • • • +  fl03y3 do not have common divisors.

Substituting x{t) and y(t) for x and y in the expansion of the func­
tion <p(x, y), we note that the terms with the lowest powers of t are 
«02&i2t2mi and a3ofli3i3ni. It follows from this that 2my =  3«i, i.e. 
w»i is not divisible by n\. Consequently, the point 0  is a singular 
point of the curve.

It turns out that if both m\ and n\ are assumed to be even, then 
all the mic turn out to be even, since they can be expressed linearly 
and homogeneously in terms of mj and n\. But, as was noted above, 

and all the ntk cannot be even. Therefore, only ni is even. This 
means that the singular point 0  is a turning point of the first kind.

§ 8. Asymptotes to curves. Suppose y is a non-closed curve 
and that

* =  x(t), y =. y{t) (a < t  <  b)
are its equations. We say that a curve tends to infinity from one 
side if x2(t) +  y2(t) -> 00 as <-> a (or as (-> b). But if x2(t) +  
+  y2(0 00 for both t a and t -> b, we say the curve tends to
infinity from both sides. Obviously, the property of a curve to tend 
to infinity does not depend on its parametrization.

Suppose the curve y tends to infinity, for example, xz-\-y2-+ 00 
as t a. The straight line g is called an asymptote to the curve y if 
the distance d{t) of a point on the curve y to the straight line g tends 
to zero when t -»■ a.

Theorem. A necessary and sufficient condition that the curve y 
defined by the equations

x = x(t), y = y(t) (a <  t <  b) 
and tending to infinity as £ ->- a, have an asymptote is that

1. Each of the two ratios
x{t)lp{t), y{t)/p(t), where p{t) = {x2{t) +  y2(t)}K 

tend to a limit. Suppose, for definiteness, that
x{t)lp{t) -> a, y(t)lp(t) -> j9;
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2. The expression
-  px{t) +  ocy(t)

also tends to a definite limit as / -> a, provide the first condition is 
satisfied.

I f this limit is denoted by p, then the equation of the asymptote will be
— fix +  ay — p = 0.

Proof. Suppose g is an asymptote to the curve and that a and ft 
are its direction cosines. The equation of the straight line can be 
written in the form

— fix +  ay — p =  0.

The point Q(t) on the curve tends to infinity, coming arbitrarily 
close to the straight line g as t -> a. It follows from this that the 
ratios x(t)/p(t), y{t)/p{t) as a converge either to a and p, or to 
— a and — p, depending on which of the two directions on the 
straight line g the projection of the point Q(t) tends to infinity. 
Suppose, for definiteness, that

x(t)/p(t) -> a, y(t)/P(t) -> p.

The quantity — Px(t) +  ay(t) — p is equal, to within sign, to the 
distance from the point Q(t) to the straight line g and, consequently, 
it tends to zero. Therefore, the expression — (3x(t) +  ay(t) tends to a 
definite limit (p) as t -> a. This completes the proof of the necessity 
portion of the theorem.

We shall now prove the sufficiency. Suppose

x(t)lp{t) a, y{t)lp[t) -> p, ay(t) -  Px(t) P 

as t-+ a. We shall show that the straight line g with equation

— Px +  <xy — p =  0

is an asymptote to the curve. In fact, the expression

— px{t) + a.y(t) -  p

is, to within sign, the distance from the point t on the curve to the 
straight line g. But

— Px(t) +  ay It) +  p -> 0
as £ -> a.

This completes the proof of the theorem.



Chapter I, § 8 17

Example. Suppose the curve y is defined by the equation

y — <p{x) (a < x <  b)

or, what amounts to the same thing,

x — I, y = <p(t) (a <  t <  b).

Suppose <p{t) -*■ oo as t -*■ a.
When t -> a,

t
-= -*  0, —
>2 (<) Vt2 +  992 (<)

— t +  0 • <p(t) -*■ — a.

Vt2 +  9>2(/j

Thus, as f -> a, we see that the curve has the asymptote

x — a =  0.

We now consider the problem of asymptotes to a curve defined by 
means of an equation in the implicit form <p(x, y) =  0.

As noted, the equation <p(x, y) =  0 defines a curve only in the 
sense that points on the curve satisfy the equation q>{x, y) =  0 but, 
generally speaking, these do not exhaust all points in the plane 
which have this property. The problem of finding the asymptotes to 
a curve, defined by means of the equation tp(x, y) = 0, is not com­
pletely defined. It turns out to be possible to only point out some 
set of lines which contain the asymptotes among them.

We shall restrict ourselves to the case of algebraic curves (i.e. the 
case where y{x, y) is a polynomial in the variables x and y).

are the equations of the asymptote in the parametric form. Suppose 
Q(u) is a point on the curve which is the closest to the point u on the 
asymptote. The coordinates of the point Q arc

Suppose
x =  x +  hi, 
y =  y +  fiu.

x(n) =  x +  hi +  f(w), 
y(u) =  y +  fiu +  tj(ii),

where
£(u) and t](u) -> 0 as u 00.

Poirorelov. Diff. G eom etry.
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We denote by'9)* the set of all terms of degree k in the polynomial 
95. We shall then have

<P =  <Pn +  9-n- 1 +  ‘ +  <P0-
Substituting x =  x(u), y = y(u) for x, y in y{x, y) and factoring 
terms containing un and m”-1, we obtain

<p{x(n), y(u)) = un(pn{X, p) +
Un ~x{x{tpn {}., \l))x  +  y{<Pn(l, tA )p  +  <Pn~l (A , /«)} +

In the right member of this equation, terms having powers less than 
un~1 are not written out.

Since <p{x(u), y(u)) =  0 and, consequently, ---- tp{x(u), y(u)) -> 0
un

as u —>■ 00, we have <pn(A, /*) =  0.
In an analogous manner, we obtain

x{<Pn{K f*))\ +  At))n ' +  <Pn-i(A, fi)  =  0 .

Since (x, y) is any point on the asymptote, this equation is the 
equation of the asymptote.

E xercises fo r  Chapter I

1. A point M  moves in space in such a way that its projection 
onto the x, y-plane moves uniformly along the circumference 
%2 _|_ yt =  a 2 wJth angular velocity to, and its projection onto the 
2-axis moves uniformly with velocity c. The curve traced out by the 
point M  is called a simple helix. Derive the equation of the helix 
in the parametric form taking time t as the parameter. Assume that 
the coordinates of the point M  are (a, 0, 0) at the initial moment 
(t =  0).

Answer: x = a cos tot, y = a sin wt, z = ct.
2. A simple helix (see Exercise 1) is projected onto the x, y-plane 

by means of parallel straight lines which form an angle (} with the 
2-axis. Find the equation of the projection. For what § will the 
projection have singular points? Discuss the nature of the singular 
points.

Answer: If the projecting lines are parallel to the y, 2-plane, then 
the equations of the projection will be

x =  a cos tot, y =  ct tan § +  a sin oot.
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The projection will have singular points if tan & — aajc. The singu­
lar points are turning points of the first kind.

3. A circular disc of radius a r ills uniformly without slipping 
along the straight line g with velocity v. Find the equation of the 
curve y which is described by a point M  which is fixed to the circular 
disc. Under what condition does the curve have singular points? 
Discuss the nature of the singular points.

Answer: If the straight line g is taken to be the x-axis and the 
point M  is initially on the y-axis below the center of the circular 
disc, then the equations of the curve y will be

x = vt — b sin vt/a, y = a — b cos vt/a,

where b is the distance of the point M  from the center of the circular 
disc. The curve has singular points if the point M  is on the circum­
ference of the circular disc (in this case the curve y is called a cy­
cloid). Singular points are turning points of the first kind.

4. Investigate the singular points of the semicubical parabola
y'2  _  x 3

Answer : (0, 0) is a singular point; it is a turning point of the 
first kind.

5. Prove that a curve defined by means of the equation
\x\2'3 +  |y|2/a =  a2/3 (astroid)

is an analytic curve. Find its singular points. Discuss the nature of 
the singular points.

Answer: The curve obviously permits the analytic parametri- 
zation

x — a cos3 /, y = a sin31,

and consequently, it is analytic. The singular points are (0, 1), 
(0, — 1), (1,0), (— 1,0). The singular points are turning points of 
the first kind.

6. Write down the equations of the asymptotes to the following 
curves:

a) x =  a sin t
y =  a(cos t +  In tan //2) (tractrix);

b) x3 +  y3 — 3axy =  0 (folium of Descartes).
Answer :
a) x = 0.
b) x +  y +  a =  0.
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Problem s and Theorems fo r  Chapter I

11. Suppose the elementary curves yi and y2 have a point in 
common and are subsets of a simple curve y. Prove that at least 
one of the following properties holds:

a) the curves y\ and 72 form an elementary curve;
b) the curves yi and y2 foim the entire curve y.
12. Prove that any simple curve can be covered with a finite or 

denumerable set of elementary curves.
13. Prove the theorem in § 2, Chapter I : Every simple curve is the 

image of an open segment or of a circumference under a one-to-one 
continuous mapping into space.

2. Suppose
x =  x[t), y =  y(t), z =  z{t)

is any parametrization of an elementary curve. Then any other 
parametrization has the form

*  =  x{o{r)), y  =  y{a{r)), z =  z(a(r)),

where ct(t) is a continuous strictly monotonic function.
3. What is the order of regularity of the curve defined by an 

equation in the implicit form <p(x, y) =  0 guaranteed by an tt-times 
differentiable function if <j>x2 -f <py‘z ^  0? Can the curve possess a 
higher order of regularity? Construct an example.

4. Construct an example of a curve which does not permit a 
smooth parametrization of any subset of itself.

5. Suppose a plane analytic curve y is defined by the equation 
<p(x, y)  =  0 in a neighborhood of the point {xo, yo) where (p is an 
analytic function. Suppose the function <p and all its derivatives up 
to and including that of the (n — l)-st order vanish at the point 
(xo, yo)- Prove that if all the zeros of the polynomial

P(f) =  f*
8n(p

8xk8yl\ (•TO. I/O)

are real and distinct, then the point (xq, yo) on the curve y is a 
regular point in the sense of the definition in § 3, Chapter I.

6. Find the conditions for the existence of an asymptote to the 
space curve

x =  x{t), y - y(t), z = z(t),
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which tends to infinity as t -*■ a, analogous to that obtained in § 8 , 
Chapter I, for a plane curve.

Write the equation of the asympi jte.
7. Write the equation of the asymptotes to an algebraic space 

curve, defined by means of the equations, in the implicit form,

<p(x, y, z) =  0, ip(x, y, z) =  0,

where <p and ip arc polynomials in x, y, and z, similar to the way this 
was done for plane curves in § 8, Chapter I.



C h a p te r  II

CONCEPTS FOR CURVES W HICH ARE RELATED  
TO TH E CONCEPT OF CONTACT

Suppose M  and M  are sets of points in space having the point 0 
in common. Let X  be an arbitrary point in the set M, h(X) its 
distance from the set M  (the greatest lower bound of the distances 
of the points of the set M  from the point X) and d(X) the distance 
of the point X  from the point 0.

We shall say that the set M  has contact with the set M  in the 
point 0  if the ratio h(X)/da(X) (a >  1) tends to zero when the point 
X approaches 0  arbitrarily closely. We shall introduce many 
concepts for curves using the notion of contact. We shall consider 
these concepts in the present chapter.

§ 1. Vector functions of a scalar argument. In the following 
discussion we shall make extensive use of the methods of vector 
analysis. In this connection, we first recall the definition of certain 
concepts.

Suppose G is an arbitrary set of points on the real line, in a plane 
or in space. We say that a vector function / is defined on the set G 
is / assigns a vector f(X) to each point X  in G.

The concept of limit is introduced for vector functions the way 
this is done in analysis for scalar functions. We say that f(X) -> a as 
X  -> X 0 if | f(X) when X  -> X 0.

Theorems on limits, analogous to limit theorems for scalar 
functions, hold for vector functions. For example, if f(X) and g(X) 
are vector functions and A(A) is a scalar function for which /(X) -> a, 
g(X) -+ b and A (A) -+m a s l ^ l o  then

f(X) ±  g(X) -> a ± b ,
A(X)f(X) ->ma, 
f(X)-g(X) -> a-b, 
f(X) x  g(X) ->a X b.

The proof of these assertions does not differ fundamentally from 
the proof of the corresponding assertions for scalar functions in
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analysis. For example, we shall prove the last assertion. We have

If(X) X g(X) — a X b\ =  |f(X) x (g(X) - b ) - b x  (f(X) - a ) | <;
I f(X) X (g(X) -  b)\ + \b x (f(X) - a )  | <  

| / ( X ) | | g ( X ) - 6 |  +  |&| \ m - a \ .

It follows from this that |f{X) x g(X) — a x b\ 0 as X  Xo.
And this means that f(X) x g(X) a x  b.

The concept of continuity for a vector function is introduced the 
same way it is done for scalar functions. Namely, the function f(X) 
is said to be continuous at the point Xo if f(X) f(Xo) as X  -> Xo-

Suppose f(X) and g(X) are vector functions which arc continuous 
at the point Xo, and that A(X) is a scalar function which is continu­
ous at this point. Then the vector functions

X(X)f(X), f(X) ±  g(X), f(X) X g(X),

and also the scalar function f(X)-g(X) are continuous at the point 
Xo- This continuity property is a simple consequence of properties 
of the limit.

We now discuss the concept of derivative.
Suppose f(t) is a vector function defined on a closed interval. We 

say that the vector function / has a derivative at the point t on an 
open interval if the limit of the ratio

nt + h ) ~  m
h

exists as h -> 0. We denote the derivative of f(t) at the point t by
nt)-

If f(t) and g(t) are vector functions which are differentiable 
functions at the point t, and is a scalar function, differentiable at 
this point, then f(t) ±  g(t), j{t) x g{t), f{t)-g(t) are functions
which are differentiable at t and we have

w r  =  r f  +  a/',
(/ ±  gY — /' ±  g',
(/ X g)' =  /' X g +  / X g',
(/•g)' =  f'-g + t-g'-

These differentiation formulas are obtained exactly as the corre­
sponding formulas for the differentiation of scalar functions in 
analysis.
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The derivative of the vector function f'{t) is called the second 
derivative of the function /(/) and is denoted by f"{t). The third, 
fourth, fifth, and higher derivrtives are defined analogously. A 
function, having continuous derivatives up to the &-th order 
inclusively, on the open interval (a, b), is called a A-times differenti­
able function on this open interval.

Suppose ei, e2, e3 are three vectors, not lying in one plane. Every 
vector r permits a representation of the form

r =  xiei +  ye2 +  ze3;

the numbers x, y, z are uniquely defined and are called the co­
ordinates of the vector r with respect to the basis e\, e2, e3. Suppose 
r(t) is a vector function defined on a segment. We shall define three 
scalar functions x(t), y(t), z(t) by the condition

r(t) = x{t)e i +  y(t)e2 +  z{t)e 3.

Hence, if the functions x{t), y(t), z(t) are continuous or differ­
entiable, then the vector function r(t) is continuous respectively 
differentiable. Conversely, if the vector function r(t) is continuous or 
differentiable, then the functions x(t), y(t), z(t) are continuous 
respectively differentiable.

In order to prove the second assertion, we form the scalar product 
of the equation r{t) = x(()ei +  y(t)e2 + z(t)e3 with the vector e\, 
which is perpendicular to the vectors e2 and e3. We then obtain 
x{t)(e i ’e\) = r(t) -e\ . From this it is clear that the continuity or the 
differentiability of the vector function r(t) implies the continuity 
respectively the differentiability of the function x(t). We proceed 
analogously for the functions y(t) and z(t).

The Taylor formula holds for vector functions. Namely, if f(t) is an 
w-times differentiable function, then

f(t +  At) =  f(t) + Atf'(t) +  • • • +  (/<*>(/) +  e(t, At)),n !
where le(i, At) \ —> 0 as At ->• 0.

In fact, f(t) = x(t)e 1 + y{t)e2 4- z(t)e3. But
Atn

x(t +  At) =  x(t) +  Atx'(t) -f- • • • 4- — ~  {x^(t) +  ei),n\
Atn

y(t + At) = y(t) +  Aty'(t) 4  • • • + —-  (y™(t) +  e2),n !
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Atn
z(t +  At) =  z(t) -(- Atz'{t) +  • • • H------ — (*<»>(<) -j- £3).

n\

Multiplying these equations by ei, e3, e3 respectively, adding, and 
then noting that x ^ e i  +  y>*>(£)e2 +  zW(t)e3 =  /<*>(/), we obtain the 
Taylor formula for the vector function f(t).

The concept of integral in the Riemr.nn sense for vector functions 
is introduced literally as in the case of scalar functions. The integral 
of a vector function possesses the usual properties. Namely, if f(t) 
is a vector function which is continuous on the closed interval 
a < I < b, and a <  c <  b, then

I  f(t)dt = J f(t)dt + /  f(t)dt.
a a c

If m is a constant, then
6 b

f  mf(t)dt =  m f  f(t)dt.
a a

If r is a constant vector then
b b

f  r-j(t)dt =  r- f  f(t)dt,
a a

b b
f  r X f(t)dt =  r X f  f(t)dt.

a a

The formula
X

d x \ ^ t)dt ^
a

for the differentiation of a definite integral is valid.
In conclusion, we note that the parametric definition of a curve 

by means of the equations

x = x{t), y -- y(t), z -- z(t)

is equivalent to the definition of the curve by means of one vector 
equation

r = r{t) =  x{t)e 1 +  y(0e2 +  z(t)e 3 ,

where e\, e2, £3 are unit vectors having the directions of the co­
ordinate axes x, y, z.
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§ 2. Tangent to a curve. Let y be
a curve, P  a point on y and let g be a 
straight line passing through the point 
P. Let us take a point Q on the curve 
and denote its distance from the point 
P  and from the line g by d and h re­
spectively (Fig. 3).

We shall call the line g the tangent to 
the curve y at the point P if hjd -> 0 
when Q -> P.

If the curve y has a tangent at the 
point P then the straight line PQ ap­
proaches this tangent as Q -> P. Con­
versely, if the straight line PQ ap­
proaches some line g as Q -*-P then this 
straight line is a tangent. To prove this Fig. 3
assertion it is sufficient to note that hjd 
is the sine of the angle between the lines g and PQ.

Theorem. A smooth curve y has a unique tangent at each point. I f  
r = r(t) is the vector equation of the curve, then the tangent at the point 
P corresponding to the value t of the parameter, has the direction of 
the vector r'(t).

Proof. Let us assume that the curve has a tangent g at the point 
P corresponding to the value t of the parameter. Suppose t  is a 
unit vector having the same direction as the line g. The distance d 
of the point Q, corresponding to the value t +  At of the parameter, 
from the point P is equal to |r(t +  At) — r(t)\. The distance h of the 
point Q from the tangent equals \{r(t-\-At) — r(t)) X r|. According 
to the definition of the tangent

h
1

\{r{t +  At) -  r(t)) x r| 
Ir(t +  At) -  r(t) |

0 as Ar -> 0.

But

l(r(< +  At) — r(t)) x t| 
\r{t +  At) -  r(t)\

r(t -f- At) — r(t)

r(t +  At) — r(t)
I ̂ ) X  T_1
' V'W

At
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From this it follows that
r'(t) X r  =  0.

This is possible only when the vector r  has the same direction as the 
vector r'{t). Thus, if the tangent exists, then it has the direction of 
the vector r'(t) and, consequently, it is unique.

The fact that the line g, passing through the point P  and having 
the same direction as the vector r'(t), is a tangent, is also true; for, 
as the preceding discussions show, for such a line we have

h
d

r'(t)
(r(t +  At) -  r{t)) x 

\r(t +  At) -  r(t) 1
\r'{t) X r'(t)\ 

V'{t) |*

This completes the proof of the theorem.
Knowing the direction of the tangent, it is not difficult to write 

its equation. In fact, if the curve is given by means of the vector 
equation r =  r(t), then the position vector f  of an arbitrary point on 
the tangent can be represented in the form .

f  =  r(t) +  Xr'(t).

This is then the equation of the tangent in the parametric form 
(with parameter A).

We shall write the equation of the tangent for a number of curves 
given in the analytic form.

Suppose the curve is given by means of equations in the para­
metric form

* =  x(t), y =  y(t), z =  z(t).

Giving the curve in this form is equivalent to giving its equation in 
the vector form

r =  r(t) =  x(t)e i +  y(t)e2 +  z{t)e 3,

where e\, e2, e2 are unit vectors in the directions of the coordinate 
axes. Replacing the vector equation

f =  r(t) + *r’(t)

by three scalar equations, we obtain the equations of the tangent, 
corresponding to the parametric form

x =  x(t) +  Ax'(t), y = y(t) + ty'{t), z =  z(t) +  h'{t)
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or in the equivalent form
x — x[t) y — y(t) z — z(t) 

x'{t) y'\t) z'{t)

In the particular case of a plane curve given by means of the 
equations

* =  x{t), y =  y(t),

the equation of its tangent is

x — x(t) y -  y{t) 
x'(t) ~  y'(t) ■

The equation of the tangent in the case when the curve is given by 
means of the equations

(*) y = y(*). z =  z(x)

is easily gotten from the equation of the tangent for the case where 
the curve is given in the parametric form. It suffices to note that 
giving the curve by means of the equations (*) is equivalent to 
giving it in the parametric form

x = t, y =  y(t), z - z{t).

The equation of the tangent to the curve, given by means of the 
aquations (*), is written as

- _  =  y — y(*) =  ~z — z(x)
y'(x) z'(x)

or in the equivalent form

y =  y(*) +  y'{x){x -  *),
z = z(x) +  z'(x)(x — x).

In particular, if we are dealing with a plane curve and its equation 
is 3/ =  y{x), then the equation of the tangent to it will be

y = y{x) +  y'(x)(x — x).

Finally, we write down the equation of the tangent at the point 
(*o, yo. 20) to a curve given by the equations

<p{x, y, z) =  0, y>(x, y, z) =  0,
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where the rank of the matrix

(Wx Wu 
\V>x Wy Wz)

equals two. Suppose
x =  x{t), y =  y{t), z = z{t)

is any regular parametrization of the curve in a neighborhood of the 
point (x0, yo, z0).

The equation of the tangent to the curve at the point (xq, yo, Zo) is

x — x0 y — yo z — zo 
xd yd zd

Thus, in order to obtain the equation of the tangent it suffices to 
know xd '.yd '-zd■ We shall now compute these ratios.

We have the identities <p{x(t), y(t), z(i)) l= 0, y>{x{t), y{t), z{t)) =  0. 
Differentiating these identities with respect to t, we have

It follows that

<pxx' +  <pyy' +  <pzz' =  0,
tpxx' +  rpyy' +  y>zz’ =  0.

x' y’ /A
<py <pz
Wy Wz

Wz Wx 
Wz Wx

Wx Wy 
Wx Wv

and the equation of the tangent assumes the form

1 ' 
1

i *
 

o ' ! 
I o 1 o

Wv Wz Wz Wx Wx Wy
Wu Wz Wz Wx Wx Wv

where the derivatives yx, <py, • • ■, y>z are evaluated at the point of 
tangency (xo, yo, zo)-

If the curve lies in a plane and is defined by the equation 
<p{x, y) =  0, the equation of the tangent will be

x — xo _ y — yo
<Px Wy

In order to derive this equation it is sufficient to note that defining a 
curve in the x, y-plane by the equation <p{x, y) =  0 is equivalent to
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defining it in space by means of the equations 
<p(x, y) =  0, z =  0.

The normal plane to a curve at the point P  is the plane which 
passes through the point P and is perpendicular to the tangent at 
this point. Writing down the equation of this plane provided we 
know the equation of the tangent in case the curve is defined 
analytically does not present any difficulty and is left to the reader 
as an easy exercise.

§ 3. The osculating plane to a curve. Suppose y is a curve and 
that P  is a point on y, and suppose a is a plane passing through the 
point P. We denote the distance of an arbitrary point Q on the curve 
from the plane a by A and the distance of this point from the point 
P  by d (see Fig. 4).

We shall call the plane a the osculating plane to the curve y at the 
point P  if the ratio hfd2 -> 0 when Q -» P.

Theorem. A regular {at least twice continuously differentiable) 
curve y has an osculating plane at every point. In this connection, the 
osculating plane is either unique or any plane containing the tangent to 
the curve is an osculating plane. I f r  = r{t) is the equation of the curve y 
then the osculating plane at the point corresponding to the value t of the 
parameter, is parallel to the vectors r'(t) and r”{t).

Proof. Suppose a is an osculating plane to the curve y at the 
point P, corresponding to the value t of the parameter. We shall 
denote the unit normal vector to the plane a by e. The distance of
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the point Q, corresponding to the value t +  At of the parameter, 
from the plane a is

h =  | e-(r(t +  At) — r(t))\. 

The distance from this point to P  is

d =  | r(t +  At) — r{t) |.
We have

hjd2
\e-{r(t +  At) -  r{t))\ 
{r{t +  At) — r(t))2

e-(r’(t)At +  +  e^ (2)

(r'(t)At +  e2At)2
j e-rlfy e-r"{t) 
j At + 2

r'2(t) +  e2'

+  d '

Since hjd2 0, eT, ea' ->■ 0 as At -> 0, and \r'(t)\ ^  0, we have 
e-r'(t) =  0, e-r"(t) =  0. Thus, if the osculating plane exists, the 
vectors r'(t) and r"(t) are parallel to it.

It is not difficult to verify the fact that the osculating plane 
always exists. To this end, we take the plane a, parallel to the 
vectors r'(t) and r"(t) (we consider any plane to be parallel to the 
zero vector). Then e-r’(t) =  e-r"(t) =  0 and, consequently, hjd2 =

- r — ----; as At ^ 0 .

Thus, the osculating plane exists at every point on the curve. 
Obviously, the osculating plane, being parallel to the vectors r'(t) 
and r"(t), will be unique if the vectors r’(t) and r"(t) are not paral­
lel. But if these vectors are parallel (or the vector r"(t) =  0), then 
any plane, drawn through the tangent to the curve, will be an 
osculating plane.

We note that the osculating plane was defined purely geometrical­
ly, without recourse to any definite method of analytic definition. 
Therefore, the fact that the vectors r' and r” are parallel expresses 
some geometric property of the curve.

We shall now derive the equation of the osculating plane. Suppose 
r = r(t) is the vector equation of the curve and that t is the value of 
the parameter which corresponds to the point P on the curve. 
Suppose r'(t) and r"(t) are vectors which are not parallel at the 
point P. Then r'(t) X r"(<) will be the normal vector to the oscu-
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lating plane. If f denotes the position vector of any point in the 
osculating plane at the point P, then the vectors f — r(t) and 
r'(t) x r"[t) are orthogonal. It follows that the equation of the 
osculating plane is

(r-r(O )-(r'(O  X r"{t)) =  0
or

(f -r{t),r'{t),r"{t)) = 0 .

In the case when the curve is defined parametrically

* =  x(t), y = y(t), z = z(t),

we obtain from this equation the equation of the osculating plane 
in the form

x — x{t), y — y{t), 
x’{t) y'(t)
x"{t) y"{t)

z — z(t)
z'{t)
z"{t)

=  0.

The derivation of the equation of the osculating plane when the 
curve is defined analytically in other forms is left to the reader.

Every straight line passing through a point on the curve perpen­
dicular to the tangent is called a normal to the curve. When the 
osculating plane is unique, two special straight lines are chosen 
from among these lines; they are the principal normal which is the 
normal lying in the osculating plane and the binomial which is the 
normal perpendicular to the osculating plane.

Since the equations of the tangent and of the osculating plane are 
known, the derivation of the equations of the principal normal and 
binormal does not present any difficulty and is left to the student as 
an exercise.

§ 4. Contact of curves. Suppose y 
and y are elementary curves having a 
common point 0. We choose the point 
P on the curve y' and denote its 
distance from the curve y by h and 
we denote the distance from P to the 
point 0  by d (see Fig. 5).

We shall say that the curve y' has 
contact of order n with the curve y at 
the point 0  if the ratio h/dn --»■ 0 as 
P ~»0. Fig. 5
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Suppose y and y' are general curves having the common point 0. 
We shall say that the curve y' has contact of order n with the 
curve y at the point 0  if an elementary neighborhood of the point O 
on the curve y' has contact of order n with an elementary neigh­
borhood of the curve y.

Theorem. Suppose y and y' are regular plane curves, that ip(x, y)=  0 
is the equation of the curve y, and that x = x(t), y =  y(t) is the eqtiation 
of the curve y'. Suppose <pxz -(- <py2 ^  0 at the point 0(xo, yo).

Then a necessary and sufficient condition that the curve y' have 
contact of order n with the curve y at the point 0  is that the conditions

d dn
qi{x(t), y(t)) =  0, —  <p{x{t), y(t)) =  0, • • •, - ---- <p(x(t), y(t)) =  0 be

satisfied for the value of t corresponding to the point 0.
P r o o f .  Suppose y is an elementary curve which is a neighborhood 

of the point 0  on the curve y. Suppose M(x, y) is any point in the 
x, y-plane, which is near the point 0. The distance of the point M  
from the curve y is the greatest lower bound of the distances of 
points on the curve to the point M. If the point M  is sufficiently 
close to 0, this greatest lower bound is attained for some point 
M(x, y) on the curve. We shall show this. -

Since the point 0  belongs to the curve y, there exists an e >  0 
such that all the points in the plane which are at a distance not 
greater than e from the point O and which satisfy the equation 
<p(x, y) =  0, belong to the curve y.

Suppose the point M  is at a distance less than e/2 from the point
0. Let M n be a sequence of points on the curve y whose distances 
from M  tend to the distance of the point M  from the curve y. The 
points M n form a bounded sequence (their distances from M  are less 
than e/2), and therefore this sequence contains a convergent sub­
sequence. Without loss of generality, wc may assume that the 
sequence M n itself converges to some point M(x,y). In virtue of 
the continuity of the function <p{x, y) in a neighborhood of the point 
0, the point M  satisfies the equation q>(x, y) =  0. From this it 
follows that the point M  belongs to the curve y. Thus, if the point 
M  is sufficiently close to 0, the greatest lower bound of the distances 
of the points on the curve y from the point M  is attained for some 
point M(x, y) on the curve y.

We shall show that the segment MM  is directed along the normal
Pogorelov, Diff. G eom etry.



34 Chapter II, § 4

to the curve y at the point M. In fact, suppose f(s) is the position 
vector of a point on the curve y, and that m is the position vector 
of the point M. The distance of the point M  from points on the curve 
equals V (r(s) — m)2. For s, corresponding to the minimum of this 
distance, we have

d -----------
—  V  (r(s) — m )2 =  0 , 
as

and hence (f(s) — m)-r'(s) =  0 which means that the vector MM  is 
directed along the normal to the curve y at the point M .

Suppose f, rj are the direction cosines of the straight line MM. 
The coordinates of the point M  can be expressed in the following 
way in terms of the coordinates of the point M :

X =  x +  f A, y = y + rjh,

where h is the distance of the point M  from the curve y.
The coordinates x, y of the point M , as points on the curves y, 

satisfy the equation <p(x, y) =  0. Thus, we have
<p(x + £h,y + rjh) =  0.

If follows that
<p{x, y) +  £h<px{x, y) +  r)h<py{x, y) +  h2R =  0,

where R is bounded in a neighborhood of the point 0(xo, yo)■
As x xq, y ->■ yo the expression £q>x +  Wy  tends to a limit, 

which is different from zero, inasmuch as it represents the scalar 
product of two vectors with coordinates f, rj and <px, <py which in the 
limit are different from zero and directed along the normal to the

— Vcurve y at the point 0. Thus, the quantity h = ---------------- \- h2R'
£<px +  Wv

has order <p as M  -> 0.
Suppose M  lies on the curve y' and corresponds to the value t of 

the parameter. Then, its distance from 0, equal to
|r(0 -  r{tQ)\ =  | ( ( -  to){r'{to) +  s)|,

is of order 11 — <o| when M  is sufficiently close to 0. From this it 
follows that a necessary and sufficient condition that the curve /  
have contact of order n with the curve y at the point 0 is that

<p(x{t), y(t))
(t -  h)

0
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as t to. But this means that all the terms in the expansion of the 
function <p(x(t), y(t)) involving powers of (t — to) up to the «-th 
inclusive, equal zero.

This completes the proof of the theorem.
Example. Suppose yai>ot..... . is a given family of curves,

depending on n parameters «i, act, • • •, an, defined by the equations 
<p(x, y, ai, • • •, <xn) =  0, and that the curve y is defined by the 
equations x =  x(t), y =  y(t).

Find a curve among this family of curves with which the curve y 
has contact of order n — 1 at the given point 0.

In agreement with the theorem we proved above, if the curve y
has contact of order n — 1 with the curve y .... . at the point 0,
then

y =  0, — y =  0.
dt" -1 <P =  0

for the value of t corresponding to the point 0.
From this system we find the values of the parameters «i, <X2, • • •, 

<xn, for which the curve y has the indicated property.

§ 5. Envelope of a family of curves, depending on a p a ra ­
m eter. Suppose 5 {ya} is a family of smooth curves on a surface, 
depending on a parameter a.
A smooth curve y is called an 
envelope of the family S if a) 
for every point on the curve y 
it is possible to give a curve 
ya of the family which is 
tangent to the curve y at this 
point, b) for every curve ya 
of the family it is possible to 
give a point on the curve y at 
which the curve ya is tangent 
to y, c) no curve of the family 
has a segment in common with the curve y (Fig. 6).

Example. A smooth curve not having rectilinear arcs is the 
envelope of its tangents.

The following theorem solves, to a known degree, the problem of 
finding the envelope.
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Theorem. Suppose the curves ya of a family S are given by the 
equations <p(x, y, a) =  0, where <p is continuous and continuously 
differentiable for all its arguments.

Then the envelope of the family S is given by the equations

<p(x, y, a) =  0, <pa{x, y, a) =  0

in the sense that for every point (x, y) of the envelope one can find an a 
such that both equations cp = 0 and <pa = 0 will be satisfied by the 
system of values x, y, a.

The proof of this theorem in the form we have just formulated it, 
although carried out by elementary methods of analysis, is obtain­
ed in a rather cumbersome fashion. In this connection, in order 
to simplify the discussion, we shall make some additional as­
sumptions about the nature of the enveloping of the curve by- 
curves of the family. Namely, we shall assume that for every point 
P of the curve y it is possible to give an interval zip of variation of 
the parameter a such tha t:

1) For every point Q of the curve y, near P, there exists only one 
curve of the family with parameter a, belonging to zip, and tangent 
to the curve at the point Q;

2) If r = r(t) is any smooth parametrization of the curve y in 
a neighborhood of the point P and ya(t) is a curve of the family- 
tangent to y at the point (I) (where a(t) belongs to Zip), then <x(t) is a 
smooth function of t.

Under such additional hypotheses on the nature of the enveloping 
of the curve y by curves of the family, the proof of the theorem is 
rather simple.

Since the curve y is tangent to the ya(() of the family at the point 
(<), the following identity holds:

<p(x(t), y(t), «(<)) =3 0.

Differentiating this identity with respect to t, we obtain

q>x%' +  <pyy +  •Pa0̂  =  0.

Since the curves y and yau) are tangent at the point (t), we have 
q>xx' +  <pyy' =  0- Therefore, we have tpaa' =  0.

We shall assume that (pa ^  0 at the point P. Then q>a ^  0 also in 
some neighborhood of the point P, and hence a' =  0 in this neigh­
borhood, i.e. <x(t) = constant =  c. But this means that the envelope
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y has a common segment with the curve yc, which is impossible. 
Thus, <pa =  0 at the point P. This completes the proof of the theo­
rem.

Remark. The system of equations

<p{x, y, a) =  0, 9\{x, y, a) =  0

can, in general, also be satisfied by curves which are not envelopes. 
For example, the equation of the envelope to the family of curves

(x — a)3 -(- (y — a)3 — 3(x — a)(y — a) =  0,

is satisfied by the line x = y, which however is not an envelope. 
This straight line consists of nodal points of the curves of the family 
(Fig. 7).

Exercises for Chapter II

1. Write the equations of the a) tangent, b) osculating plane,
c) normal plane, d) principal normal, e) binormal to the helix

x =  cos t, y =  sin t, z =  t
at the point (1, 0, 0).

x — 1 y z 
Answ er : a) equation of the tangent: —-— =  —
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b) equation of the osculating plane: y — z =  0 ;
c) equation of the normal plane: y +  z = 0 ;
d) equation of the principal normal: y =  z =  0 ;

x — 1 y z
e) equation of the bmormal: --------- =  — = ------- .
' M 0 1 - 1

2. Write the equation of the tangent to the curve defined by the 
equations

x2 +  y2 +  z2 =  1. x2 +  y2 = x

at the point (0, 0, 1).

Answ er: — =  — 
0 1

z — 1
0

3. Find the equation of the parabola of the form y = x 2-\-ax-\-b 
which is tangent to the circle x2 +  y2 =  2 at the point (1, 1).

Answer: y =  x2 — 3x +  3.
4. Find the curve y = y{x) if it is known that the length of the 

segment of the tangent between the point of tangency and the 
point of intersection of the tangent with the x-axis is constant and 
equal to a.

Answer: Tractrix:

c ±  x — a In
V  a2 — y2 ------ -

--------------- 1- V a2 — y2 .

5. Segments of the same length are marked off on the binor­
mals of a simple helix. Find the equation of the curve generated 
by the endpoints of these segments.

Answer: Helix.
6. What is the angle at which the curves

xy = ci, x2 — y2 =  C2
intersect ?

Answer: jt/2.
7. If the curve y in a plane intersects the curves of the family 

<p{x, y) =  constant (<px2 +  <py2 ^  0)

orthogonally, then it satisfies the equation
dx dy
<Px <fy

Prove this assertion.
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8. Find the family of curves which intersect all circles passing 
through two given points in the plane orthogonally.

Answer: A family of circles.
9. Find the equation of the circles having contact of the second 

order with the parabola y =  x2 at its vertex.
Answ er: x2 +  y2 = y.
10. Find the envelope of the family of straight lines which form a 

triangle XO Y  of area 2a2 with the coordinates axes.
Answ er: The part of the equilateral hyperbola xy =  a2 which 

lies in the angle XOY.
11. Find the envelope of the family of straight lines on which the 

coordinate axes cut off a segment of constant length a.
Answer: Astroid:

l*r/3 + I y \V3 =  a2'3-
12. Find the envelope of the trajectories of a material point 

ejected from the origin of coordinates with initial velocity ô-
Answer: The trajectory parabola

_  _  gx2 VQ̂
y ~ ~  2 ^  +  2g

where g is the acceleration due to gravity.
13. Find the envelope of light rays emanating from the origin of 

the coordinate system after their reflexion from the circle 
x2 -|- y2 =  2ax.

Answ er : The Pascal limagon:

(x2 +  y2 — 2 ax)2 +
4a2
y ^x2 +  y2

16ax \  
— )  =  °

Problem s and Theorems fo r  Chapter II

1. Suppose y is a curve and that P  is a point on y, and suppose g 
is a straight line passing through the two distinct points R and S on 
the curve. We say that the curve has a tangent at the point P in the 
strong sense if the straight lines g converge to some straight line 
gP as R, S -* P.

Prove that if the curve is smooth, then it has a tangent in the 
strong sense at every point, and this tangent coincides with the 
tangent in the sense of the usual definition, given in § 2.
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If the curve has a tangent in the strong sense at every point, then 
the curve is smooth.

2. Prove that if the tangents to a smooth curve pass through a 
common point, then the curve is a segment of a straight line, or half­
line, or an entire line.

3. Prove that the tangents to the helix

x =  a cos tot, y =  a sin tot, z =  bt

are inclined at a constant angle to the x, y-plane. Show that the 
principal normals to the helix intersect the 2-axis.

4. An inversion is a transformation under which corresponding 
points are located on the same half-line emanating from some fixed 
point S (called the center of inversion), and the product of their 
distances from S is constant. Prove that the angle between curves 
remains invariant under an inversion.

5. Prove that if the tangents to a curve are parallel to some plane, 
then the curve is a plane curve.

6. What is the condition that the straight line gt :

\ax(t)x +  bi(t)y +  ci {t)z +  d\{t) = 0,
\a2{t)x +  b2(t)y +  c2(t)z +  ci2{t) =  0

be tangent to some curve

x = x(t), y =  y(t), z = z(t) ?

Find this curve.
7. Write the equation of the osculating plane to the curve defined 

by the equations
<p(x, y, z) =  0, y)(x, y, z) = 0

at the point (x0, yo, 20) •
8. Suppose y is a curve and that P  is a point on y ; let a be a plane 

passing through distinct points Q, Ii and S on the curve. We say 
that the curve y has an osculating plane at the point P in the strong 
sense if the planes a tend to some plane ap as Q, R, S -> P.

Prove that if a regular (i.e. twice continuously differentiable) 
curve has a unique osculating plane at the point P in the usual 
sense (§ 3), then it has an osculating plane at this point in the strong 
sense and they coincide.

9. Reconstruct the curve x =  x(t),y = y{t),z = z(t) knowing that
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its osculating planes are
A{t)x -+- B(t)y +  C(t)z +  D(t) =  0.

10. Prove that if all the osculating planes of a curve pass through 
a common point, then the curve is a plane curve.

11. Prove that a necessary and sufficient condition that the 
curve x =  x(t), y = y{t), z =  z(t) be a plane curve is that

y'
x" y" z'
x'" y'" z'

12. Prove that the contact property of curves is mutual, i.e. if the 
smooth curve y\ has contact of order n with the smooth curve yz 
then the curve y2 has contact of order n with the curve y 1 at the 
same point.

Show by an example that the smoothness requirement is essential.
13. Assume the curves y 1, y2, y3 have a common point P at which 

the curves y\ and y2, y% and 73 have contact of order n. Then the 
curves y 1 and ys also have contact of order n at the point P.

14. Prove that if a curve has contact of order three with its 
osculating plane at every point, then this curve is a plane curve.

15. A projective correspondence
OLX +  p
yx +  (5

a <5 — /3y 0

is established between the points of the x and y coordinate axes.
Prove that the family of straight lines joining corresponding 

points on the axes, envelope a second degree curve.
16. Prove that if a one parameter family of curves in the plane is 

given by the equations
cp(x, y, a, P) =  0, /(a, p) =  0,

where /a2 +  fp2 ^  0, then the envelope of this family satisfies the 
equations

9? =  0, /  =  0, <pa +  kfa =  0, (pp +  Wp =  0

in the sense that for every point (x, y) of the envelope, one can find 
a, p and A which are such that together with x and y they satisfy the 
above four equations.

The equation of the envelope in the implicit form can be obtained 
by eliminating a, p, A from these four equations.
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FUNDAM ENTAL CONCEPTS FOR CURVES WHICH 
ARE REL AT ED TO T H E  CONCEPTS OF 

CURVATURE AND TORSION

§ 1. Concept of arc length of a curve. Suppose y is an arbitrary 
curve. In § 3 of Chapter I we showed that y is the image of an open 
interval g or of a circumference k under a continuous and locally 
one-to-one mapping cp into space.

A segment of the curve y is the image of an arbitrary closed seg­
ment A, belonging to the open interval g or to the arc k of the circum­
ference k under the mapping <p. The endpoints of the segment of the 
curve are the images of the endpoints of the open interval A or the 
endpoints of the arc k  of the circumference.

The concept of a segment of a curve thus introduced does not 
depend on the mapping in the sense that if the mappings (pi and q>2 

of the open interval g or of the circumference k define the same 
curve y then the set of segments of the curve defined by the map­
pings <p\ and 9?2 coincide. We shall prove this.

Suppose the mappings (pi and (p2 of the open interval g define the 
same curve y. In agreement with the definition given in § 3 of 
Chapter I, this means that there exists a one-to-one and bicontinu- 
ous correspondence y> between the points of the open interval g for 
which the images of corresponding points under the mappings <pi 
and g?2 coincide.

Suppose Ai(a <  t < b) is any closed interval belonging to g and 
that (pi{Ai) is its image under the mapping (pi. We most prove the 
existence of a segment A 2, whose image is 952 (J 2) under the mapping 
(p2 coincides with (pi{Ai).

We shall denote the image of the segment Ai under the mapping y> 
of the open interval g onto itself by A'. We shall show that A' is a 
closed interval. In fact, the function y>(t) which effects the mapping 
of the open interval g onto itself, is continuous on the segment 
Ai(a < t < b). It follows from this that this function attains its 
maximum M, its minimum m and assumes all intermediate values 
on the segment A\. But this means that A' is the closed interval
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m <, t <, M. The images of the closed segments A\ and A' under the 
mappings <pi and 932 respectively yield the same segment of the 
curve. This completes the proof of our assertion.

The set of points on a segment of a curve can be ordered in the 
following way. Suppose <p(A), <p[B), 99(C) are three points on a 
segment of the curve. We shall say that the point 99(B) lies between 
the points <p{A) and 99(C) if the points on the segment A or the arc of 
the circumference corresponding to them are in this relation.

It follows from the preceding discussion on the independence of 
the concept of segment of the mapping 99 which determines the 
curve y that the “betweenness” relation for points of the segment 
is also independent of 99. In fact, a continuous function y>(t) which 
assumes distinct values for distinct t is a monotonic function. It 
follows from this that if A', B', C' are points of the segment A' 
corresponding to A, B, C, then B' lies between A' and C'. But this 
means that the mappings 991 and 993 of the open interval g, which 
define the same curve, also define the same “betweenness” relation­
ship for the points of its segment.

In conclusion we note that the property of points of being the end­
points of a segment of a curve is also independent of the mapping 99, 
which determines the curve. In fact, if the curve y is defined with the 
aid of <pi then the endpoints of the segment <pi{Ai) are the images of 
the endpoints of the segment A \ under the mapping 991; if the curve 
y is defined by means of 992 then the endpoints of the segment 
q>i(Ai) =  <pz{A') are the images of the endpoints of the segment A' 
under the mapping 992. But in virtue of the monotonicity of the 
function y>(t) the endpoints of the segments A \ and A' correspond to 
each other under the mapping 
y> and the images of corre­
sponding points of the segments 
A 1 and A' coincide under the 
mappings 991 and 992. This is 
what we were required to prove.

We now define the concept 
of arc length of a segment of a 
curve.

Suppose y is a segment of 
the curve y and let A and B 
be its endpoints. We choose



44 Chapter III, § 1

the points Ao =  A, A\, • ■ •, A n =  B, on the segment y, proceeding 
from A to B in the sense that the point A% lies between A%-\ and 
Ai+\. We join successive points At and Ai+i by means of rectilinear 
segments. We then obtain the polygonal arc 71 inscribed in the 
segment y of the curve (see Fig. 8).

We shall say that the segment y of the curve y is rectifiable if the 
lengths of the polygonal arcs r  are uniformly bounded. The least 
upper bound of the lengths of the polygonal arcs T, inscribed in the 
segment y of the curve, will be called the arc length, or simply the 
arc, of this segment. We shall say that the curve y is rectifiable if 
each of its segments is rectifiable. The length of the arc will be the 
least upper bound of the arc lengths of its segments.

We shall show that arc length so introduced possesses the usual 
properties, namely:

1. If the segment A'B' of the curve y is a subset of the segment 
AB  and if the segment AB  is rectifiable, then the segment A'B' is 
also rectifiable and the length of its arc s(A'ZF) is less than the 
arc length s{AB) of the segment AB.

2. If C is a point on the segment AB  of the curve y which is 
distinct from both A and B, and the segments AC and CB arc 
rectifiable, then the segment AB  is also rectifiable, and

s(i4C) +  s(CB) = s(AB).

Proof. Since the segment A'B' is a subset of the segment AB, 
then one of the po in ts^ ' and B' (for definiteness, let us say it is

the point A') is not an 
endpoint of the segment 
AB. Suppose r '  is an 
arbitrary polygonal arc, 
inscribed in the segment 
A'B' of the curve, and 
suppose C is an arbitrary 
point of the segment A A ', 
which is geometrically 
distinct from A and A' 
(Fig. 9). Adding the new 

vertices A, C and B to the polygonal arc we obtain the polygonal 
arc r  inscribed in the segment AB  of the curve y. The length of the 
polygonal arc TTs greater than the length of / ” by at least the sum of
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the lengths of the links AC and CA'. Since the polygonal arc f  was 
taken arbitrarily, this means that the lengths of the polygonal arcs 
r '  are uniformly bounded and, consequently, the segment A'B' of 
the curve y is rectifiable. The length of this segment, obviously, is 
less than the length of the segment AB  of the curve by at least the 
sum of the lengths of the links AC and CA'.

We shall now prove the second property. Suppose r  is an arbitrary 
polygonal arc inscribed in the segment AB  of the curve. We add the 
vertex C to it. The polygonal arc i ’thus obtained has length greater 
than or equal to that of the polygonal arc This polygonal arc 
consists of the polygonal arcs 71' and 71" inscribed in the segments 
AC and CB of the curve y. It follows from this that the segment AB 
is rectifiable and that

s(i4C) +  s(CB) > s(AB).

Now suppose F' and r "  arc arbitrary polygonal arcs inscribed in 
the segments AC respectively CB of the curve. Then the polygonal 
arc r ,  consisting of the polygonal arcs C' and C", will be inscribed 
in the segment AB  of the curve y. It follows from this that

s(i4C) +  s(CB) < s(AB).

Combining this with the preceding inequality we obtain
s(i4C) +  s{CB) = s(AB),

which was to be proved.

§ 2. Arc length of a smooth curve. N atural param etrization 
of a curve.

Theorem. A smooth curve y is rectifiable. I f  r = r(t) is its smooth 
parametrization and y{a <  t <  b) is a segment of the curve y then the 
length of this segment is

s(y) =f\r'(t)\dt.
a

Proof. Suppose r  is an arbitrary polygonal arc inscribed in the 
segment y of the curve y. Let h = a ,t2, • • •, tn+i = b be the values 
of the parameter t corresponding to its vertices. The length of the 
link of the polygonal arc joining the vertices tt and ti+i equals 
\r{ti+\) — r(ti) |. Therefore the length of the entire polygonal arc is

s(f) =  Z?-! |r(ti+1) -  r{h) |.
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We now estimate the length of the polygonal arc r .  We have

\r[h+1) -  r{k)| <  \x{ti+i) — x(ti)\ +  |y(^+i) -  y{k)\ +
+  |z(ti+1) -  z(k)| =  (*1+1 -  *,)(|*'(0,')l +  | /(# ,")! +  |* W ') |) ,

where # /, $<”. lie between U and k + Since the derivatives x'(t), 
y’(t), z’(t) are bounded by some constant M  on the closed interval 
a <  t <, b, and

2?-i {h+i — h) = b — a,
we have

s{r) <  3M(b -  a).

Thus, the lengths of the polygonal arcs F  inscribed in the segment y 
of the curve y, arc uniformly bounded and, consequently, the 
segment y is rectifiable. Since the segment y was chosen arbitrarily, 
we conclude the curve y is also rectifiable.

Remark. In the proof of the rectifiability of the segment y  of the 
curve we used the fact that there existed a smooth parametrization 
for every segment, whereas the smoothness of the curve, by defi­
nition, assumes only the existence of such a parametrization only in 
a neighborhood of each point of the curve. In order not to use 
only one smooth parametrization for the entire segment y, we pro­
ceed in the following manner.

We shall start with any parametrization r =  r(t) of the curve y. 
Suppose a <  t <, b is a segment of y. We decompose the segment y

h — d
by means of the points a +  k --------  (k =  1,2, • • • , « — 1) into n

n
segments. If n is sufficiently large, each of these segments permits a 
smooth parametrization. In fact, let us assume the contrary. 
Suppose a segment tn'tn'' can be found for every n which does 
not permit a smooth parametrization. The sequence of segments 
tn'tn" contains a subsequence of segments whose endpoints tn' and 
tn" converge, obviously to a common limit ô- But the point <o has a 
neighborhood which permits a smooth parametrization. For suf­
ficiently large n the segment tn'tn" lies in this neighborhood and, 
consequently, it permits a smooth parametrization. We have thus 
arrived at a contradiction. Thus, for sufficiently large n the segment 
y will be decomposed into n segments, each of which permits a 
smooth parametrization and hence it is rectifiable by what was



Chapter III, § 2 47

proved above. But then, as was proved in the preceding section, the 
segment y is also rectifiable.

We shall find the length of the segment y, which permits a smooth 
parametrization r = r(t).

We inscribe the polygonal arc / ’into the segment y, satisfying the 
following conditions: 1) the length of the polygonal arc r  differs 
from the arc length of the segment y by at most e; 2) for all i 
\k+i — k\ <  5. Here s and d are arbitrary positive numbers. The 
existence of such a polygonal arc is quite obvious. In fact, there exists 
a polygonal arc r  satisfying the first condition by the definition of 
the arc length of the segment of a curve. Adding new vertices to it, 
we do not invalidate the first condition. But at the same time the 
addition of new vertices helps us satisfy the second condition also.

We now estimate the length of an arbitrary link of the polygonal 
arc. We have

M<i+1) — r{ti) | =  \{x{k+i) — x{k))e\ +  (y{h+1) — y(k))e 2 +
+  {z{k+\) — z(ti))e 3| =  (<i+i — ti)\x' +  y'(#i")02+2'(0<"')«3| =  

{k+i — k)\{x'(k) +  £i ) e 1 +  (y'{k) +  £i')e2 +  {z'(ti) +  £i")£ 3] •

In virtue of the uniform continuity of the functions x'[t), y'{t), z'[t) 
on the closed interval a < t  <, b the quantities e%, e%" are less
than some e(d), where e(d) -> 0 as <5 -> 0. Therefore

\r{ti+i) — r(tt) | =  (ti+1 — tt)\r'{ti)\ +  {ti+1 — tt)rjt,

where \rji\ is less than some e(<5) which tends to zero as 6 -> 0.
Now suppose that r n is a sequence of polygonal arcs inscribed in 

the segment y, for which

s ( rn) s(y) and d„ -> 0.

The length of the polygonal arc is

s (rn) =  2  (ti+i -  k) \r'(k)\ +  £  (k+1 -  u)m-

As n -> 00,

£  (k+1 -  k) \r'{k)\ -+f\r'{t)\dt,
a

and S  (̂ <+1 — k)Vi 0 inasmuch as 2  {k+i — k) =  b — a, and
\m\ < e(6n)-
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Thus the arc length of the segment y of the curve y is 

s(?) =f\r'{t)\dt.
a

This completes the proof of the theorem.
Suppose y is a rectifiable curve and let r =  r(t) be any one of its 

parametrizations. Suppose s(t) is the arc length of the segment tot 
of the curve y. We shall define the function o(t) by means of the 
conditions

a{t) = s(t) i f t 0 <t ;  
a(t) = — s(t) if t0 > t\ 
a(t0) =  0.

The function a(t) is strictly monotonic. Therefore a can be taken as 
the parameter on the curve. We shall call this paramctrization the 
natural parametrization.

T h e o r e m .  The natural parametrization of a regular (k-times 
differentiable, analytic) curve without singular points is regular (k- 
times differentiable respectively analytic). I f  r = r(o) is the natural 
parametrization of the curve then \r'(o)\ =  1.

P r o o f .  Suppose r = r(t) is any regular parametrization of the 
curve y in a neighborhood of an arbitrary point corresponding to 
the value cti of the parameter. For each segment belonging to this 
neighborhood we have

H ___
<j — ffi =  f  V f '2(t)dt. 

h
Since dofdt =  V f'2(<) >  0 and r[t) is a &-times differentiable function 
of t, t is a &-times differentiable function of o. But for a close to a ,  
r(o) =  r(t(o)). It follows from this that r(o) is a regular (A-times 
differentiable) function and

dr (a) 
do

dr(t) dt 
dt do

df(t)
dt

1
df(t)
dt

Consequently, |r'(cr)| =  1.
This concludes the proof of the theorem.
C o r o l l a r y .  A regular (k-times differentiable, analytic) curve 

permits a regular (k-times differentiable respectively analytic) para­
metrization “in the large", i.e. for the entire curve.
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Such a parametrization is the natural parametrization r(o) and also 
any parametrization obtained from it by means of a regular transfor­
mation of the parameter a = <p(t), where <p(t) is a regular (respectively 
analytic) function of t which satisfies the condition that rp'{t) ^  0.

To conclude this section, we shall give the formulas for arc length 
of a regular curve for two different ways of analytically determining 
the curve.

1. For a curve defined by the equations

x =  x{t), y = y(t), z =  z(t),

the arc length is

s{h, h) =  f\r'(t)\dt = f V ^ ^ ' y ^ ' + V ^ d t .
h h

2. A curve defined by the equations
y =  y(x), z = z(x)

has arc length

s(*i, xz) = f  V \  +  y '2 +  z'^dx.
xi

For plane curves, lying in the x, y-plane, wc must set z' =  0 in 
these two formulas.

§ 3. Curvature of a curve. Suppose P is an arbitrary point on 
the regular curve y and Q is a point on y near P. We denote the angle 
between the tangents drawn to 
the curve at P  and Q by A& and 
the arc length of the segment 
PQ of the curve by As (Fig. 10).

The curvature of a curve y at 
the point P  is the limit of the 
ratio A&jAs as the point Q ap­
proaches P.

Then the following theorem 
holds.

T h e o r e m .  A regular (twice 
continuously differentiable) 
curve has a definite curvature 
k\ at each of its points. I f
Pogorelov, Diff. G eom etry.
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r = r(s) is the natural parametrization of the curve, then

ki =  K'(s)|.
Suppose the values s and s +  As of the parameter correspond to 

the points P and Q. The angle d# is equal to the angle between the 
unit tangent vectors r(s) =  r'(s) and t(s +  As) =  r’(s As).

Since the vectors t(s) and r(s +  /Is) are unit vectors and form the
d#

angle A&, ]r(s +  ds) — t ( s ) |  =  2 sin —— . Therefore

Ad' . Ad1
, , 2 sin----  sin----  ,

|t(s +  As) — r(s)| 2 2 di?
As As A# As

~2
Noting that A-& -> 0 as As ->• 0 and passing to the limit, we obtain

|r"(s)| =  *i-

This completes the proof of the theorem.
Suppose the curvature does not vanish at a given point on a 

curve. Consider the vector n =  (l/£i)r"(s). The vector n is a unit 
vector and lies in the osculating plane of the curve (§ 3, Chapter II). 
Moreover, this vector is perpendicular to the tangent vector r, 
so that t 2 =  1 and, consequently t - t '  =  T-rjki =  0. Thus, this 
vector is directed along the principal normal to the curve. Obvi­
ously, the direction of the vector n does not change if the initial 
point of the arc s or the direction of traversing s is changed. In the 
sequel, when we mention the unit vector on the principal normal to 
the curve, we shall have in mind the vector n.

Obviously, the vector t  X n =  b is directed along the binormal 
of the curve. This vector will be called the unit binormal vector of 
the curve.

We shall find an expression for the curvature of a curve in the 
case of an arbitrary parametric representation. Suppose the curve 
is given by the vector equation r = r{t). We shall express the second 
derivative of the vector function r with respect to the arc s in terms 
of the derivatives with respect to t. We have

r’ = rss’.
It follows that
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and con seq u en tly

rs' =  r'/V r"2.

D ifferen tia tin g  th is  eq u a lity  once m ore w ith  respect to  t, w e ob ta in  

rsss' =  r"/Vr '2 — (r' •r”)r'j(Vr'2)3.

Squ arin g  b o th  sid es o f th is  eq u a lity  and n o tin g  th a t s '2 
h a v e

r
ki2 =  -

”2/2 _  ( / . / ')2  
Jr’2)3

r'2, w e

or, w h a t am ou n ts to  th e  sam e th in g ,

( /  X r")
( / 2)

F rom  th is  w e ob ta in  th a t th e  cu rvatu re o f a cu rve g iven  b y  th e  
eq u ation s

*  =  x{t-), y  =  y(t), z =  z(t)
is d efin ed  b y

x" y" 2 A."V z 2 , \z" x"
x' y' + +  , ,1 2 X

(x'2 +  y '2 +  z '2)3

If th e  cu rve is a p lan e cu rve ly in g  in th e  x, y -p lane,

h ,  _  ( * ' Y  -  y ”*')2
1 ( p c ’ 2 +  y ' 2 ) 3  •

If th e  p lane cu rve is g iven  b y  th e  eq u ation  y =  y(x),

u 9 y"a= ------------— .
(1 +  y ' 2 ) 3

R e m a r k .  T he cu rvatu re o f a  curve is, b y  d efin ition , n on n egative . 
F or p lane cu rves, it  is  co n v en ien t in m a n y  cases to  ch oose th e  sign  
of cu rvatu re so th a t  in  som e cases it  is p o sitiv e  and in others  
n eg a tiv e . T h e ta n g en t vector  r'(t) o f th e  cu rve ro ta tes as it  m o v es  
a lon g  th e  cu rve in  th e  d irection  of increasing  t. D ep en d in g  on th e  
d irection  o f ro ta tion  of th e  v ector  r'(t) th e  cu rvatu re is considered  
p o sitiv e  or n ega tive . If w e d eterm in e th e  sign  o f th e  cu rvatu re of a
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p lan e cu rve b y  th is  con d ition , th en  w c ob ta in  th e  fo llow in g  form ulas  
for i t :

x " y '  — y " x '  x " y '  —  y " x 't  --   QT* D _ ______________
{ x ' 2 +  y'2)3/* ( x ' 2 +  y'2)3/» ‘

In particular, if the curve is g iven  in  the form  y  =  y ( x ) ,  

k  =  y " l (  1 +  y'2)3/* or k  =  -  y ” /( l  +  y'2)3/*.

In conclusion , w e find  a ll th e  curves h av in g  curvature zero at all 
its  po in ts. W e have

h  =  |r"(s)| = 0 .

I t  fo llow s th a t r ” (s) =  0 and , co n seq u en tly , r(s) =  a s  +  b, w here  
a  and b are co n sta n t vectors.

T hus, a curve h a v in g  curvature everyw here equal to  zero is 
eith er  a stra igh t lin e or an  open  in terv a l on  a stra igh t line. T he  
converse is also true.

§ 4. Torsion of a curve. Suppose P  is an arb itrary po in t on  the  
curve y  and  Q  is a p o in t on  y  near P .  W e d en ote  th e  angle b etw een  
th e  oscu la tin g  p lanes to  the curve at th e  p o in ts  P  and Q  b y  A S  and  
w e d en o te  the len g th  o f th e  segm en t P Q  on th e  curve b y  A s .  T he  
a b s o l u t e  t o r s i o n  \ k 2 \ of th e  curve y  at th e  p o in t P  is understood  to  be 
th e  lim it of th e  ratio  A S / A s  as Q  -> P .

T h e o r e m .  A  r e g u l a r  (t h r e e - t i m e s  c o n t i n u o u s l y  d i f f e r e n t i a b l e )  c u r v e  

h a s  a  d e f i n i t e  a b s o l u t e  t o r s i o n  |&2 | a l  e v e r y  p o i n t  w h e r e  th e  c u r v a t u r e  i s  

d i f f e r e n t  f r o m  z e r o .  I f  r  —  r ( s )  i s  t h e  n a t u r a l  p a r a m e t r i z a t i o n  o f  th e  

c u r v e ,  t h e n

|*2| =  \ ( r ' r " r ' " ) \ l k i * .

P r o o f .  If th e  curvature of the curve y  a t th e  po in t P  is  d ifferent 
from  zero, th en  b y  co n tin u ity  it is d ifferent from  zero a t all p o in ts  
su ffic ien tly  close to  P .  A t ev ery  p o in t w here th e  curvature differs 
from  zero, the vecto rs r ' ( s )  and r " ( s )  are d ifferent from  zero and are 
n ot parallel. T herefore, a d efin ite  o scu la tin g  p lane ex is ts  a t each  
poin t Q  near P .

Suppose b (s ) and b ( s  +  d s) are u n it b inorm al v ectors a t  the  
p o in ts P  and Q  on the curve y. T he angle A S  is eq u al to  the angle  
b etw een  th e  vectors b ( s )  and b ( s  +  d s).

S ince th e  v ectors b ( s )  and b ( s  - f  d s) are u n it v ectors and  form
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th e  angle A f t ,  |6(s -f- d s) — 6(s)| =  2 sin  . T herefore

A f t  A f t
2  s i n ----- s i n ------------

\b ( s  +  A s )  -  b ( s ) \  2 _  2 A f t

A s  A s  A f t  A s

IT

F rom  th is  w c o b ta in , p assin g  to  th e lim it as A s  ->  0 , th a t

N  =  |6'|.

T he v ecto r  V  is p erpendicu lar to  b sin ce b ' - b  — (£62)' =  0 . I t  is 
n o t d ifficu lt to  see  th a t b ' is a lso  p erpendicu lar to  r.

In  fa c t,
b' =  ( t  X  « ) '  =  t  X  n  +  T X  r i .

B u t t ' | |n .  T herefore, V  =  t  X n ’, w h en ce it  fo llow s th a t V  is  
p erpendicu lar to  t .  T h u s, th e  v ecto r  V  is parallel to  th e v ecto r  n  

and , con seq u en tly ,

|/e2| =  \b ’ - n \ .

I f  w e se t n  =  (1 / k ) r "  and b =  r '  x  r " / k i  in to  th is  last eq u ation , 
w e ob ta in

N  =  \ ( r ' r " r " ’) \ l k i 2 .

This completes the proof of the theorem.
W e sh a ll n ow  d efin e th e  t o r s i o n  of a curve.
It fo llow s from  th e  fact th a t th e  vecto rs V  and n  are p arallel th a t  

th e  o scu la tin g  p lane to  th e  cu rve ro ta tes  ab ou t th e ta n g en t to  th e  
cu rve as it m o v es  a lon g  th e  curve in  th e  d irection  of increasing  s. In  
th is  con n ection , w e d efin e th e  torsion  of a curve b y  m ean s o f th e  
eq u ation

^2 =  zb \ki\
an d  w e sh a ll tak e  th e  sign  ( + )  if th e  ro ta tion  o f th e  ta n g en t p lane  
occurs in  th e  d irection  from  b to  n ,  an d  (—) if  th e  ro ta tio n  occurs  
in  th e  d irection  from  n  to  b . If w e d efin e th e  torsion  o f a cu rve  in  
th is  w a y , w e sh all h a v e  k z  =  V  • n  or

k z  =  -  { r ' r " r " ' ) j k ! 2 .

W e sh a ll n ow  find  th e  exp ression  for th e  torsion  o f a cu rve  in  th e
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case  w h en  it  is d efin ed  b y  an arb itrary  regular p aram etriza tion  
r =  r(t). W e h ave

y s =  r'V, rss =  r"t'2 +  r't", 
rsss =  r"T3 +  { / ,  r"),

w here { / ,  r"} is  a linear co m b in a tio n  of th e  v ectors r' and  r". If w e  
su b stitu te  th e  exp ression s for rSl rss, an d  rsss ju st fou n d  in to  th e  
form ula for k<i an d  n o te  th a t t '2 =  1 jr'2, w e ob ta in

k% =  — (r'r”r"')l(r' X r")2.

In  con clu d in g  th is  sec tio n  w e sh all find  a ll th e  cu rves for which  
th e  torsion  van ish es a t  ev ery  p o in t. W e h a v e  =  b' -n =  0 , b u t  
as w e saw , V • r  =  0 an d  b'-b =  0 . C on seq u en tly , b' =  0 , b =  bo =  
c o n sta n t vector.

T he v ecto rs r an d  b are perpendicular. T herefore r’-bo =  0 . It 
fo llow s th a t (r(s) — r0) • bo =  0, w h ich  m ean s th a t th e  curve lies in 
th e  p lane g iven  b y  th e  vector  eq u ation  (r — yq) -bo =  0.

T hus, as curve w h ose torsion  van ish es at ev e r y  p o in t is a p lane  
curve. T he converse assertion  is a lso  true.

§ 5. The Frenet formulas. Natural equations of a curve.
T hree h a lf-lin es, em an atin g  from  a p o in t on th e curve and h av in g  

th e  d irection s of th e  v ectors r, n, b are ed ges of a trihedron. T h is  
tr ih ed ron  is ca lled  th e  natural trihedron.

In  order to  in v e stig a te  th e  properties o f th e  cu rve in  a neigh b or­
h ood  o f an arb itrary  p o in t P  it tu rn s ou t in  m a n y  cases to  be co n ­
v e n ie n t to  ch oose a cartesian  sy ste m  o f coord in ates ta k in g  th e  p o in t  
P  on  th e  cu rve as th e  origin  of coord in ates an d  th e  ed ges of th e  
n atu ra l trihedron as th e  coord in ate  axes. B e low  w e sh all ob ta in  th e  
eq u ation  o f a cu rve  w ith  su ch  a ch oice  o f coord in ate  sy stem .

W e sh a ll now  exp ress th e  d er iv a tiv es  of th e  v ectors r ,  n, b w ith  
resp ect to  arc len g th  o f th e  curve aga in  in term s o f r ,  n, b. W e h ave

t '  =  r" =  kin.
To ob ta in  b', le t  u s recall th a t th e vector  b' is  p arallel to  n an d  th a t  
b’-n — ko. I t  fo llow s th a t

b' =  ktfi.
F in a lly ,

n'=  (bXT)'= b' XT +  i x r ' =  k%n x r +  ki b x n  = — (Air +  k<>b).
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T he sy stem  of eq u ation s

t' =  kin,
n ’ =  —  k i  t  — k z  b,  

b ’ =  k z  n

are ca lled  th e F ren et form ulas.
W e sh a ll fin d  th e  exp an sion  of th e  radius v ector  r ( s  +  d s) in a 

n eighborhood  o f an arbitrary P ,  corresponding to  th e arc s a long the  
axes o f th e  n atural trihedron a t th is p o in t. W e h ave

B u t at th e  p o in t P ,  r = 0 , r ’ = t ,  r " = k \ n ,  r ' " = k { n — k i 2r — k i k z b ,  and  
so on. T hus,

W e sec th a t in order to  exp an d  the fu n ction  r(s +  A s )  as a power  
series in  d s  it is su ffic ien t to  know  th e curvatu re and torsion  of the  
curve as fu n ction s of th e  arc s. T h is g iv es  th e b asis for assum ing th a t  
th e curvature and torsion  determ in e th e cu rve to  som e e x ten t. And  
indeed  w e do h ave  th e fo llow in g  v a lid  theorem .

T h e o r e m .  S u p p o s e  k \ ( s )  a n d  k z ( s )  a r e  a r b i t r a r y  r e g u l a r  f u n c t i o n s  

w i t h  k i ( s )  >  0. T h e n  t h e r e  e x i s t s  a  u n i q u e  ( u p  to  p o s i t i o n  i n  s p a c e )  

c u r v e  f o r  w h i c h  k \ ( s )  i s  t h e  c u r v a t u r e  a n d  k z ( s )  i s  th e  t o r s i o n  a t  th e  

p o i n t  c o r r e s p o n d i n g  to  t h e  a r c  s .

P r o o f .  L et u s consider th e  fo llow ing sy stem  of d ifferentia l 
eq u ation s

w here £, rj, C are u nknow n vector  fu n ction s.
Sup p ose f(s ) , r) (s ) , £(s) is th e  so lu tion  of th is  sy stem  sa tis fy in g  the

r  =  k m ,

r)' =  — ki£ — kzt, 
C  =  k z  7],
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in itia l co n d itio n s £' =  £o, rj =  r)o, C =  Co for s =  so, w h ere £o, >?o. Co 
are th ree m u tu a lly  p erpendicu lar u n it v ecto rs w h ose  tr ip le  prod u ct  
eq u als 1: (Co, W> Co) =  1 •

W e sh a ll sh ow  th a t  th e  vecto rs £(s), rj(s), £(s) are u n iq u e and  
m u tu a lly  p erpendicu lar for arb itrary  s and (£, ij, C) =  1. T o  th is  
end , w e sh all com p u te  (£2)', (rj2)', (C2)', (£“rj)', (yC)', (£•£)'• M aking  
use o f th e  eq u ation s of th e  sy ste m , w e ob ta in  th e  fo llow in g  e x ­
pression s for th ese  d e r iv a t iv e s :

(£2)' =  (£•??)' =  hr , 2 -  -  k2hC,
(’I2) '  =  —  *1  S-rj — kwt,  (»r C ) '  =  M 2 —  fo C 2 —

(C2)' =  2 k2 jy-C, (£•£)' =  *11?-C +  *af-i?.
I f  w e consider th ese  eq u ation s as a sy ste m  of d ifferen tia l eq u ation s  

for £2, rj2) C2, £■??, 7?-C, C-£, w e n o te  th a t  it  is  sa tisfied  b y  th e  se t  o f 
v a lu es £2 =  1, r, 2 — 1, C2 =  1, £•?? =  0 , ??•£ =  0, £■£ =  0. On th e  
oth er  h an d , th is  sy ste m  is sa tisfied  b y  th e  v a lu es £2 =  £2(s), r, 2 =  
?72(s), ■• ■, £ • £  =  C(s)-£(s). B o th  th ese  so lu tio n s co in cid e  for s =  so, 
an d  co n seq u en tly , th e y  co in cid e  id e n tic a lly  accord in g  to  th e th eorem  
on th e  u n iq u en ess of th e  so lu tion . H en ce , for a ll s w e h a v e  

£2(s) =.„ 1, rj2(s) =  \, • • • ,  C(s)-£(s) = 0 .

W e shall sh ow  th a t (£(s), rj(s), £(s)) =  1. S ince £, rj, C are m u tu a lly  
p erpendicu lar u n it vectors, w e h a v e  (£, j?, £) =  ±  1. T h e  trip le  
p rod u ct (£, rj, C) dep en d s co n tin u o u sly  on  s, it  eq u a ls +  1 w hen  
s =  so, and  therefore it  is  eq u a l to  1 for all s.

W e sh a ll n ow  con sid er th e  cu rve y, d efin ed  b y  th e  v e c to r  eq u ation

r = /£ ( s ) r f s .
SO

W e n o te  first o f all th a t th e  p aram etr iza tion  of th e  cu rve y is  th e  
natural p aram etriza tion . In  fact, th e  arc len g th  o f th e  segm en t SoS 
of th e  cu rve y  eq u als

/ | / ( s ) |< f s  =  f\£(s)\ds =  s — s0.
So So

T h e cu rvatu re o f th e  cu rve y  eq u a ls |r"(s)| =  |£ '(s)| =  * i(s) . T he  
torsion  of th e  cu rve  y  eq u als

(r'r"r"') (£, hr,, ki’r, +  hr,')
ki2 ' kl2

(£, k\tj, ki'rj +  k\(— hC — k2£)) , .
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Thus, the curve y has curvature ki(s) and torsion k2(s) at the 
point corresponding to the arc s.

This completes the first part of the theorem. We now proceed 
to the proof of the second part.

S u ppose yi  an d  72 are tw o  cu rves w h ich  h a v e  th e  sam e cu rvatu re  
&i(s) an d  torsion  k2(s) a t th e  p o in ts  corresponding to  th e  arc s. W e  
sh a ll correspond th e  cu rves y i  an d  72 b y  m ean s of p o in ts  corre­
sp on d in g  to  th e  arc sq, an d  w ith  th e  n atural trihedra a t th ese  p o in ts. 
S u p p ose t i ,  Mi, 61 an d  T2, M2, 62 are u n it ta n g en t, prin cip al norm al, 
an d  b in orm al v ecto rs to  th e  cu rves 71 an d  72 resp ective ly .

T he tr ip les o f v ecto r  fu n ction s r i(s ) , mi(s), bi(s) and  T2(s), n2(s), 
62(5) are so lu tio n s o f th e  sy ste m  of eq u ation s for f ,  rj, £. T he  
in itia l v a lu es of th ese  so lu tio n s co incide. I t  fo llow s from  th is  th a t  
th e  so lu tion s co in cid e id en tica lly . In  particu lar, n ( s )  =  T2(s), or 
ri'(s) =  r2'(s). In tegra tin g  th is  e q u a lity  b etw een  th e  lim its  So, s, we 
ob ta in

n (s )  =  r2(s).

Thus, the curve 72 differs from 71 only by its position in space.
This completes the proof of the theorem.
The system of equations

la =  &i(s), /e2 =  £2(s)

are ca lled  th e  natural equations o f th e  curve. A ccord in g  to  th e  th e o ­
rem  p roved  ab ove , a curve is d efin ed  u n iq u e ly  to  w ith in  p osition  
in  space b y  its  n atu ra l eq u ation s.

§ 6. Plane curves. In  th is  sec tio n  w e sh all consider th e o scu ­
la tin g  circle, ev o lu tes , and  in v o lu te s  o f a p lane curve.

S u ppose 7 is a p lan e cu rve and th a t P  is  a p o in t on  7. A  circu m fer­
en ce k p assin g  th rou gh  th e  p o in t P,  is  ca lled  th e o scu la tin g  circle to  
th e  curve 7 a t th e  p o in t P  if th e  cu rve  has, a t th is  p o in t, c o n ta c t of 
th e  secon d  order w ith  th e  circle. T h e cen ter  of th e  o scu la tin g  circle  
is  ca lled  th e  cen ter  o f cu rvatu re of th e  curve.

W e shall find  th e o scu la tin g  circle o f a regular cu rve 7 a t a 
p o in t P, w here th e  cu rvatu re is d ifferen t from  zero. S u ppose  
r '■= r(s) is  th e  natu ra l p aram etriza tion  o f th e curve. T h e eq u ation  of 
a n y  circum ference h as th e  form

(r — a)2 — R2 =  0 ,
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where a  is the position vector of the center of the circumference and 
R is its radius.

A ccord in g  to  th e th eorem  in § 4 , C hapter II , a n ecessary  and  
su ffic ien t con d ition  th a t th e curve y h a v e  co n ta ct o f th e  second  
order w ith  th e  circum ference a t th e  p o in t P  is  th a t th e  fo llow in g  
co n d itio n s be sa tisfied  at th is  p o in t :

{ r { s )  -  a ) 2 -  R2 =  0 ,
d ,

—  { { r ( s )  —  a ) 2 — R2} =  2 ( r ( s ) — a ) - r ' ( s )  =  0 
a s

d2
—— U r ( s )  — a ) 2 — P 2} =  2 r"2 +  2 ( r ( s )  —  a ) - r " ( s )  =  0. 
ds2

O f th ese  three con d ition s, th e  first exp resses th e fact th a t th e  
p oin t P  lies on  th e  circum ference. I t  is clear from  th e  second  
con d ition  th a t th e  v ecto r  (r(s) — a ) ,  d irected  from  th e  cen ter  of th e  
circle a t th e  p o in t P ,  is perpendicular to  th e  ta n g en t to  th e  c u r v e ; 
th is  m ea n s th a t th e  cen ter  o f th e circle lie s  on th e  n orm al to  th e  
curve. T he th ird  con d ition  d efin es th e  radius o f th e  circle. In  fact, 
r ' 2 (s) =  1, r " ( s )  =  kn an d  sin ce |r(s) — a \ is th e radius R of th e  
circle a t th e  p o in t P , and th e  v ecto r  r ( s )  —  a  is parallel to  th e v ector  
n, w e h a v e  1 — Rk =  0 . T h u s, th e  radius of th e  oscu la tin g  circle  
eq u als th e  radius o f cu rvatu re o f th e curve. I t  fo llow s from  th is th a t if 
th e  cu rvatu re a t th e p o in t P  eq u als zero, th e  o scu la tin g  circle to  
th e  curve d oes n ot e x is t  a t th e p o in t P . In  th is  case, th e  circle  
d egen erates in to  a stra igh t line, and  th e  ta n g en t to  th e  cu rve has  
co n ta ct o f th e  secon d  order w ith  th e  curve.

W e h a v e  th u s fou n d  th e  radius an d  th e  p osition  o f th e  cen ter  of 
th e  oscu la tin g  circle. W e sh all now  d efin e th e  evolute of a curve.

The evolute of a curve is the geometric locus of the centers of 
curvature of the curve.

W e shall find  th e eq u ation  of th e ev o lu te  o f a regular cu rve y. 
S u ppose r  =  r ( s )  is th e  n atu ra l p aram etrization  o f th e  curve. T hen  
th e  radius v ecto r  o f th e  cen ter  of cu rvatu re o f th e  curve is

f =  r  +  (1 /k)n.

S u ppose x =  x{t), y =  y(t) is a n y  regular p aram etriza tion  of the  
curve y.

W e h ave
x  =  x + { l j k ) £ ,  y  =  y + ( \ l k ) r j ,
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w here f ,  rj are th e  p rojection s of th e  v ector  n o n to  th e  coord in ate  
axes. B u t

f (J, ( (x'2 + y'2)31* ^  y  x'
~y'x' -  V'y' ’ 1  _  ^  (* '8  +  y v f i i  • 1 -  ±  ( ^ T +  y> 2)*/2 •

I t  fo llow s th a t  th e  eq u a tio n s of th e  e v o lu te  are

x‘'2 +  y'2 x'2 +  y'2
x = x — y' — ------—  , y = y + x'    .y x — x y y x — x y

W e sh all ex p la in  w h at th e  e v o lu te  o f a cu rve represents. W e shall 
lim it ou rse lves to  th e  con sid eration  o f th e fo llow in g  fu n d am en ta l 
c a s e s :

a) k ' ( s )  >  0 or k ' ( s )  <  0, an d  k ( s )  d ocs n ot van ish , a lon g  th e  
en tire  c u r v e ;

b) k ' ( s )  >  0  or k ' ( s )  <  0 a lon g  th e  entire curve, and k ( s )  is zero  
for s =  so ;

c) k ' ( s )  >  0 for s <  so, k ’ (s) <  0  for s  >  so, k ' { s o )  =  0 , &"(so) ^ 0 ,  
and k ( s )  d oes n ot van ish .

In  th e  first case, th e  e v o lu te  is a regular curve w ith o u t singular  
p o in ts  (F ig. 1 la ). In  fa c t, in  th is  case w e h a v e

(  x k  / I  \ ' \  k ' n,  _ ( , +  „/*)■ =  r  +  ( -  k - +  » ( T ) ) = - ^ # 0 .

F ig . 11



60 C h a p t e r  I I I , § 6

In  th e  secon d  case, th e  e v o lu te  d ecom p oses in to  tw o  regular  
cu rves, w h ich  are th e  e v o lu te s  o f th e  p arts o f th e  cu rve y  corre­
sp on d in g  to  s <  so an d  s >  so, r e sp ec tiv e ly  (see F ig . 116).

In  th e  th ird  case , th e  e v o lu te  is  a regular curve, th e  p o in t on  th e  
e v o lu te  corresponding to  th e  p o in t so on  th e  curve is  a singu lar  
p oin t, n a m ely  a tu rn in g  p o in t o f th e  first k ind  (see F ig . 11c). W e  
sh a ll sh ow  th is.

F or s =  so. w e h ave

r  = n{\iky = o, f" = -  hr(\iky + «(i//e)",
f " '  =  -  2 k r ( \ I k ) "  +  «(l/£)"'.

W e sh a ll refer th e  e v o lu te  to  a  rectan gu lar coord in ate  sy s te m , 
ta k in g  th e  p o in t <?(so) on  th e  e v o lu te  as th e  origin  of coord in ates, 
and th e  tan gen t and norm al of th e  curve y  a t th e  p o in t Q {s o )  as th e  
d irection  of th e  x and  y axes. F or su ch  a ch oice  of coord in a te  sy ste m , 
w e sh a ll h ave

2 =  ( - * / 3) ( 1/ * ) " ( s - s 0)3 +  

y =  £0/*)"(s -  so)2 +  • • •■
I t  fo llow s from  th is  th a t th e  p o in t (?(so) on th e  e v o lu te  is  a singular  
p o in t, n a m ely  a tu rn in g  p o in t o f th e  first kind.

W e shall n ow  consider som e p rop erties o f th e  evo lu te .
S u ppose y  is a regular curve for w hich  k ' ( s )  reta in s th e  sam e sign  

th rou gh ou t, an d  k ( s )  n ever van ish es. In  th is  case, as w e sh ow ed , th e  
e v o lu te  y  of th e  cu rve y  is a regular curve w ith o u t sin gu lar p o in ts.

W e shall find  th e  arc len g th  of th e  segm en t o f th e  ev o lu te , corre­
sp on d in g  to  th e  segm en t S1S2 on  th e  curve. W e h a v e

It  fo llow s th a t

s ( s i ,  S2) =  f\f'\ds  =  f\{l/ky\ds.  
81 81

s{si, S2)
1 1

k(s2) k(si)
sin ce k' reta in s th e  sam e sign.

T h u s, th e  arc len g th  of a seg m en t of th e  e v o lu te  eq u a ls th e  
ab so lu te  v a lu e  of th e  d ifference o f th e  radii o f cu rvatu re a t  th e  
p o in ts  corresponding to  th e  en d p o in ts  o f th is  segm en t.

W e sh a ll sh ow  th a t th e  e v o lu te  y  is  th e  en ve lop e  o f  th e  norm als to  
th e  cu rve  y. In  fact, th e  p o in t Q(s) on th e e v o lu te  lies on  th e  norm al
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to  th e  curve a t th e  p o in t Q ( s ) .  T he ta n g en t to  th e ev o lu te  at the  
p o in t Q { s )  h as th e  d irection  f' =  n { \ j k ) ' ,  and con seq u en tly , it 
co in cid es w ith  th e  norm al to  th e  curve a t th e  p o in t Q ( s ) .

W e sh a ll now  d efine an i n v o l u t e  of a curve.
S u ppose y  is a regular cu rve and th a t r =  r(s) is its  n atural para- 

m etrization . S u p p ose @(so) is a n y  p o in t on  th e  curve. W e m ark off 
on th e tan gen t to  th e  curve y  a t an  arb itrary  p o in t Q ( s ) ,  s  <  so , a 
segm en t equal to  so — s, in  th e  d irection  o f th e  v ecto r  t(s). W e  
d en ote  th e  p o in t th u s o b ta in ed  b y  Q ( s )  (see F ig . 12).

T he geom etric  locu s o f th e  p o in ts  Q ( s )  is ca lled  an  in v o lu te  of th e  
curve.

O b viou sly , a cu rve h as an  
in fin ite  num ber of in vo lu tes .

A  graphic rep resen tation  of 
an in v o lu te  can  be g o tte n  in  
th e  fo llow in g  w ay . W e im ag­
ine a ta u t strin g , w ound  on  
th e  part of th e  cu rve y , corre­
sp on d in g  to  s <  so w ith  en d ­
p o in t a t th e  p o in t <?(so). If 
th is  str in g  is u n w ou n d  b y  its  
end, ta n g en tia lly  to  th e  curve, 
th en  its  en d p oin t w ill describe  
an in v o lu te  o f th e  curve.

W e sh a ll now  find th e  eq u ation  of th e  in v o lu te . B y  defin ition , 
th e  p osition  v ecto r  o f th e p o in t Q ( s )  on  th e  in v o lu te  is

r = r +  (s0 — s)t.

T h is is therefore th e  eq u ation  o f th e in vo lu te .
In  th e case o f an  arb itrary  p aram etriza tion  r =  r{t), th e  eq u ation  

of th e  in v o lu te  w ill o b v io u sly  be
to

r =  r -)-------=  I V r '2 dt.
v V 2 J

t

W e sh all exp la in  w h at th e  in v o lu te  represents in tw o  fu n d am en ta l 
c a s e s :

a) &(s) d oes n o t van ish  for a ll s <  so on  th e  cu rve;
b) k ( s )  van ish es o n ly  for s =  s i , w here &'(si) ^  0.
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In  th e  first case, an  in v o lu te  is a regular cu rve w ith o u t s in g u ­
larities. In  fact,

r =  (r — (s — sq)t)' =  — (s — so)kn 0.

In  th e  secon d  case, an  in v o lu te  is a lso  a regular cu rve, b u t th e  
p o in t ^j(si) on  th e  in v o lu te  is a sin gu lar p o in t, n a m ely  a tu rn in g  
p oin t of th e  secon d  k ind . In  order to  prove th is  assertion , w e m u st  
refer th e  in v o lu te  to  a  rectan gu lar cartesian  coord in ate  sy ste m  
ta k in g  th e  p o in t Q (si) as th e  origin  of coord in ates, an d  as its  c o ­
ord in ate  axes, stra ig h t lin es parallel to  th e  ta n g en t an d  norm al to  
th e  cu rve y a t th e  p o in t

W e sh a ll consider som e p roperties o f an  in v o lu te .
S u p p ose y  is a regular cu rve w ith  n onzero  cu rvatu re an d  le t y be  

one o f its  in v o lu tes .
T h e ta n g en t to  th e  in v o lu te  y a t th e  p o in t Q(s) h as th e  d irection  

f  =  (s — so)kn, i.e . it is  p arallel to  th e  n orm al to  th e  cu rve y  a t  th e  
p o in t Q{s). S in ce th e p o in t Q(s) lies on  th e  ta n g en t to  th e  cu rve y at 
th e  p o in t Q(s), th e  norm al to  th e  in v o lu te  at th e  p o in t Q(s) is  th e  
ta n g en t to  th e  cu rve  at th e  p o in t @(s).

T h e  cu rve y is  th e  e v o lu te  of its  in v o lu te . T o  p rove th is, it su ffices  
to  sh ow  th a t  th e  p o in t @(s) on th e  cu rve y is  th e  cen ter  of cu rvatu re  
of th e  in v o lu te  a t th e  p o in t Q(s). In  fact, th e  p o in t Q(s) lies on  th e  
n orm al to  th e in v o lu te  a t th e  p o in t Q{s). T h e  radius of cu rvatu re of 
th e  in v o lu te  a t th is  p o in t is

1 /k =
(f'2 )3/a

V V " V 2 — (r’-r")2
=  So — S.

I t  fo llow s from  th is th a t  th e  p o in t Q(s) is  th e  cen ter  o f cu rvatu re of 
th e  in v o lu te  a t th e  p o in t Q(s).

E x e r c i s e s  f o r  C h a p t e r  I I I

1. F in d  th e  len g th  o f th e segm en t — a <  x <  a o f th e  parabola
y  =  bx2.

„ 2abV  1 +  4a2b2 +  ln(2a£> -f V 1 +  4a2b2)
A n s w e r : s  = ------------------------------------------  .

2 a
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2 . F in d  th e  len g th  o f th e  segm en t o f th e  curve

x  =  a  cosh  t ,  y  =  a  sinh  t ,  z  =  a t

b etw een  th e  p o in ts  0 and t.

A n s w e r :  s =  y / 2 a  s in h .  t.

3 . F in d  th e arc len g th  o f th e astro id

x  =  a  co s3 t ,  y  =  a  s in 3 t.

A n s w e r :  s =  6a .

4 . F in d  th e  len g th  o f th e segm en t 0 <  t  <, 2 n  of th e  cyc lo id

x  =  a ( t  — sin  t ) ,  y  =  a (  1 — cos /).

A n s w e r :  s =  8 a .

5 . F in d  th e  exp ression  for arc len g th  of th e  cu rve d efin ed  b y  an  
eq u ation  in polar coord in ates

P =  P(# )•

A n s w e r :  s ( # i ,  t f 2) = / V p 2 +  p ' z d d .

6. F in d  th e  cu rvatu re of th e curve

x  =  t  —  sin  t ,  y  =  1 — cos t , z  =  4  sin  —  . 
2

A n s w e r  : k\ =  1 1/ 1 +  s in 2 —  .

7 . F in d  th e  cu rvatu re a t th e p o in t (0 , 0 , 0) o f th e  curve d efin ed  
b y  th e  eq u ation s in  th e  im p lic it form

x  +  sinh x  =  sin y  +  y ,  

z  +  ez  ~  x  +  ln(l +  x )  +  1.

A n s w e r :  k i  =  y / 6 / 9 .

8. F in d  th e  curvatu re and torsion  a t an arb itrary p o in t t  of th e  
cu rve g iv en  in E xercise  2 .

A n s w e r :  k \  =  11 ( 2 a  c o s h 2 1), /e2 =  \ j ( 2 a  c o s h 2 t ) .

9 .  C om pute th e  torsion  of th e curve

x  =  a  cosh  t  cos t ,  y  =  a  cosh  t  sin  t ,  z  =  a t .

A n s w e r  : k<i =  — a  cosh  t.

10. S how  th a t th e cu rvatu re and torsion  of a sim p le  h e lix  are 
co n sta n t.
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11. Find the expression for the curvature of a plane curve given 
in the polar form.

A n s w e r : ^  =  ( !  +  ( ! )  ) / ( l

12. Show that the torsion of the curve

r = a f  b(t) X b'{t)dt,

where b(t) is a vector function satisfying the conditions |6(£)| =  1, 
b'(t) ^  0, is constant.

13. Show that the ratio of the curvature to the torsion of the 
curve

x =  a /s in  <x(t)dt, y =  a f  cos x(t)dt, z =  bt

is constant.
14. Find the evolute of the parabola y2 =  2px. 
A n s w e r :  Semicubical parabola

27fy2 = 8 { x - p ) 3.

15. Find the evolute of the tractrix

x =  — a ^ln tan — -f- cos , y =  a sin t.

A n s w e r :  Catenary
x

y =  a cosh —  
a

16. Find the evolute of the astroid

\x\* +  |y[! =  l.
Answ er: Astroid

\* +  y\l +  \x — y|* = 2.
17. Find the evolute of the circle x2 +  y2 =  R2.

Answ er: x  =  R(cos &+(■& — c) sin #), 
y =  i?(sin ft — (# — c) cos #).

18. Find all the plane curves with given natural equation 
k  - k ( s ) .

Answer: x  =  / s in  ix(s )ds ,  y —  J cos <x(s)ds, where a { s ) = f  k ( s ) d s .
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Problem s and Theorems fo r  Chapter III

1. A function f(t) defined on the interval a <  t <  b is said to be 
a function of bounded variation if the sum

2* i m  -  /(fc-i)i
is uniformly bounded for arbitrary ti, h, •••, tn such that 
a <  h  <  h  < ■ ■ • < t n <b.

Prove that a curve y is rectifiable if and only if it permits the 
parametrization

x =  x{t), y = y(t), z =  z(t),

where x(t), y{t), z(t) are functions of bounded variation, in a neighbor­
hood of each of its points.

2. Prove that if a curve possesses any one of the following 
properties then it has the remaining three properties also:

1) the tangents to the curve form a constant angle with some 
direction,

2) the binormals to the curve form a constant angle with some 
direction,

3) the principal normals to the curve are parallel to some plane,
4) the ratio of the curvature to the torsion of the curve is 

constant.
Find the general form of the curve which has these properties.
3. Prove that if the curvature and torsion of the curve arc 

constant and different from zero then this curve is a simple helix.
4. Prove that if a one-to-one correspondence is established 

between the points of two curves for which the binormals to the 
curves coincide in corresponding points, then the curves are plane 
curves.

5. Prove that an arbitrary curve with constant torsion and 
nonzero curvature can be given by the vector equation

r = c f  b(t) X b'{t)dt,
where b(t) is a vector function satisfying the conditions

16(01 =  1. * '(0 * 0 .
6. Construct the curve if one of the three vector functions r(s), 

n(s) and b(s) is given.
7. If a correspondence between the points of two curves can be

Pogorelov, Diff. Geometry.
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established in such a way that the tangents at corresponding 
points of these curves are parallel then the principal normals and 
binormals are also parallel. Prove this.

81. The curves yi and y2 are said to be Bertrand curves if a 
one-to-one point correspondence can be established between them 
for which the principal normals coincide at corresponding points.

Prove the following properties of the curves y 1, yz :
a) the distance between corresponding points on the curves y\ 

and yz is constant;
b) the tangents to the curves yi and y2 at corresponding points 

form a constant angle;
c) the curvature and torsion of each of these curves are connected 

by the relation
a sin ftki +  a cos ftkz =  sin ft,

where a is the distance between corresponding points on the curves 
y 1, y2 and ft is the angle between the tangents at the corresponding 
points.

82. Prove that if the curvature and torsion of a curve are con­
nected by the linear relationship

a sin ftki +  a cos #£2 =  sin ft,

then the curve is a Bertrand curve.
83. Prove that a curve defined by the vector equation

r = a f  e(t)dt +  b f  e(t) X e'{t)dt,

where e(t) is a vector function, satisfying the conditions \e{t)\ =  1, 
\e'(t)\ =  1, is a Bertrand curve. And conversely, an arbitrary 
Bertrand curve can be defined by a vector equation of this type.



PART TWO

T H E O R Y  OF  S U R F A C E S

C h a p t e r  IV

CONCEPT OF SURFACE

§ 1. Elementary surface. Simple surface. General surface.
A plane region is said to be an elementary region if it is the image of 
an open circle (i.e. the interior of a circle) under a one-to-one and 
bicontinuous mapping. Briefly, this is expressed as follows: an 
elementary region is a region homeomorphic with a circle.

Suppose y is a simple closed curve in the plane. The well-known 
Jordan theorem states that a simple closed curve decomposes the 
plane into two regions and is the frontier of each of these regions. 
One of these regions is finite and the other is infinite. It turns out 
that the finite region is homeomorphic to a circle. Thus, the in­
terior of a square, rectangle, ellipse are all elementary regions.

We now define an elementary surface.
A set 0  of points in space will be called an elementary surface if it 

is the image of an elementary region in a plane under a one-to-one 
and bicontinuous mapping of this region into space.

Suppose 0  is an elementary surface and G is an elementary plane 
region whose image under a one-to-one and bicontinuous mapping / 
is the surface 0. Let u and v be the cartesian coordinates of an 
arbitrary point belonging to the region G and let x, y, z be the 
coordinates of the corresponding point on the surface. The coordi­
nates x, y, z of the point on the surface are functions of the coordi­
nates of the point in the region G:

x = fi{u, v), y =  /2(w, v), z =  f3(u, v).

This system of equations, which determine the mapping /  of the 
region G into space, are called the equations of the surface in the 
parametric form.

A set 0  of points in space will be called a simple surface if this set
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is connected and-every point X  in 0  has a neighborhood G such that 
the subset of 0  which lies in G is an elementary surface.

An elementary surface is a simple surface. But the set of elementa­
ry surfaces forms only a part of the set of all simple surfaces. For 
example, the sphere is a simple surface but it is not elementary.

Simple surfaces cannot be characterized generally and simply in 
the large as this was done for simple curves. Some idea of the 
variety of simple surfaces is given by the following reasoning. If an 
arbitrary closed set of points is deleted from any simple surface in 
such a way that the connectivity of the remaining part is left 
undisturbed, then the remaining part will also be a simple surface.

A simple surface is said to be complete if the limit point of any 
convergent sequence of points on the surface also is a point on the 
surface. For example, a sphere and a paraboloid are complete 
surfaces, but a spherical segment is not a complete surface (we have 
in mind here a spherical segment without the circumference

bounding it).
If a simple complete surface 

is finite, then it is said to be 
closed. Besides spheres, the 
surface of a torus, obtained by 
revolving a circumference about 
a straight line lying in the plane 
of the circumference and not 
intersecting it (Fig. 13), is for 
example, also a closed surface.

We now define the concept of neighborhood of a point on a simple 
surface.

A neighborhood of a point X  on a simple surface 0  is the common 
part of the surface 0  and some neighborhood of the point X  in 
space. In agreement with the definition, each point of the simple 
surface has a neighborhood which is an elementary surface. In the 
sequel, in speaking of a neighborhood of a point on a surface we 
shall have in mind such an elementary neighborhood.

A set 0  of points in space will be called a general surface if it is 
the image of a simple surface under a continuous and locally one-to- 
one mapping of it into space.

We shall say that the mapping fi of a simple surface 0 \  and the 
mapping fz of the simple surface 0 2  define the same general surface
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0  if a one-to-one and bicontinuous correspondence can be established 
between the points of the surfaces 0 i and 02 for which the images 
of corresponding points of these surfaces coincide on the surface 0.

Suppose the general surface 0  is the image under a one-to-one and 
continuous mapping into space of a simple surface 0. We shall say 
that a sequence of points f (Xn) on the surface 0  converges to the 
point f(X) if the sequence of points X n on the simple surface 0  
converges to the point X.  A neighborhood of the point f(X) on the 
surface 0  is the image of an arbitrary neighborhood of the point X  
on the surface 0  under the mapping /.

Although the convergence of sequences of points on a general 
surface 0  and the neighborhoods of points on 0  are defined as the 
images of convergent sequences and neighborhoods on a simple 
surface, starting with some definite mapping, these concepts do not 
depend on the particular character of the mapping / in the sense 
that starting with another mapping /' of another simple surface 
which defines the same general surface 0, we arrive at the same 
convergent sequences and the same neighborhoods of points on the 
surface 0. This follows from the possibility of establishing a one-to- 
one and bicontinuous correspondence between the points on the 
simple surfaces 0  and 0 ' for which the images of corresponding 
points on these surfaces under the mappings / and /' coincide. The 
images of the corresponding convergent sequences on the surfaces 
0  and 0 ' define the same convergent sequence on the surface 0. The 
images of corresponding neighborhoods of corresponding points on 
the surfaces 0  and 0 ' define the same neighborhood of the point 
on the general surface 0.

In conclusion, we note that if a simple surface, in particular an 
elementary surface, is considered as a general surface, then the 
concept of convergence of points on it is equivalent to the concept 
of geometric convergence, and the concept of neighborhood is 
equivalent to the concept of geometric neighborhood introduced 
for simple surfaces.

§ 2. Regular surface. Analytic definition of a surface. It
follows from the definition of a general surface that there exists a 
neighborhood for each of its points which is an elementary surface.

A surface 0  will be said to be regular (&-times differentiable) if 
each of the points on this surface has a neighborhood, permitting a
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regular parametrization, i.e. allowing one to write the equations in 
the parametric form

x = fi{u,v), y =  h{u,v), z = f3(u,v),

where /i, /2, f3 are regular (A-times continuously differentiable) 
functions, defined in an elementary region G of the u, v-plane. For 
k =  1, the surface is said to be smooth.

A surface is said to be analytic if it allows an analytic para­
metrization (the functions /i, f3, f 3 are analytic) in a sufficiently 
small neighborhood of each of its points.

In the sequel we shall consider regular surfaces exclusively.
A point P  on a regular surface will be called a regular point if the 

surface permits a regular parametrization in a neighborhood of this 
point

x — x(u, v), y =  y(u, v), z =  z{u, u),

satisfying the condition that the rank of the matrix

/ Xu yu 2«\
\Xd yv zv)

evaluated at the point P  equals two. In the contrary case a point of 
the surface is called a singular point.

Thus, if a point P  of a regular surface is singular then the rank of 
the above-indicated matrix is less than two for any regular para­
metrization of 0  in a neighborhood of the point P.

A curve on a surface all points of which are singular points of the 
surface is called a singular curve.

In the sequel, if the contrary is not expressly stated, we shall 
assume that all points on the surface considered are regular points.

In agreement with the definition, in the neighborhood of each of 
its points a regular surface can be given by means of equations in the 
parametric form

x = x(u, v), y = y(u, v), z - z(u, v),

where x(u, v), y(u, v), z(u, v) are regular functions of the variables 
u, v defined in some region G of the u, u-plane. The question 
naturally arises, when does the system of equations

x =  x(ti, v), y =  y{u, v), z = z(u, v), 

where x(u, v), y(u, v), z(u, v) are regular functions in some region G
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of the u, y-plane, define a surface ? The answer to this question is 
given, in many cases, by the following theorem.

T h e o r e m .  I f  x(u,v), y(u,v), z(u,v) are regular functions in the 
region G of the u, v-plane which satisfy the condition that the rank of 
the matrix

(x u yu
\*i> y>v zv)

equals two everywhere in G, then the system of equations 

x =  x(u,v), y =  y{u, v), z =  z(u,v)

defines some surface 0 . This surface is the image of a simple surface G 
under a continuous and locally one-to-one mapping which assigns to 
the point (u, v) in the region G a point in space with coordinates 
x{u, v), y(u, v), z(u, v).

In the proof of the necessity part of this theorem, we obviously 
need only the assertion about the local one-to-oneness of the 
indicated mapping. We shall prove this.

We assume that the assertion is not true; then there exists a 
point («o, ô) in the region G which is such that in every neighbor­
hood, however small, of this point, one can find two distinct points 
(ui, Vi) and («2. w2) such that

x(ui, — x(u2, v2) =  0, y(ui, vi) — y(u2l v2) =  0, 
z(ui, v{) — z{u2, v2) =  0.

We have
x(ui, Vl)—x(u2, V2) =  (x(Ui, Vl)—x(ui, V2)) + (x(Ui, v2)—x(u2, z>2)) =  

(wi — V2)xv{Ui, &i) +  (mi — U2)xu(ph', v2) =  0 .

Analogously
y(Mi, Vi)—y(u2, v2) =  {vi—v2)yv(ui, &2) +  {ui—u2)yu{&2 , w2)=0,  
z(ui, vi)—z(u2, V2) =  (Vi—V2)zv(Ui, & 3) +  {u i — u 2) z u ( & 3 ' ,  v 2) = 0 .

Considering the fact that u 1 — u2, vi — v2 do not vanish simul­
taneously, we conclude from the three equations thus obtained that 
the rank of the matrix

/ x u(u 1, 0 i ') ,  y„(Mi, #2'), zu(u 1, &3')\
\ x v(tfi, v2), yv{&2, v2), zv{&3, v2) )

is less than two, i.e. its second order determinants are equal to zero. 
In virtue of the continuity of the functions x u, xv, • • •, zv it follows
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from this that all the second order determinants of the matrix

/ xu yu
y-y zvJ

are equal to zero at the point (Uq, Vo), i.e. the rank of the matrix is 
less than two. We have thus arrived at a contradiction. This con­
cludes the proof of the assertion.

With a proper choice of x, y, ^-coordinates axes, some simple 
surfaces permit a parametrization for the entire surface of the form

x = u, y = v, z =  f(u, v),

where f{u, v) is a function defined in a region G of the u, a-plane. 
The equations of this surface can be written in the equivalent form

2 =  f ( x ,  y).
Such a parametrization of the surface differs from others by its 

greater graphicalness. The correspondence between points on the 
surface and points of the region in the x, y-plane is realized by a 
projection by straight lines, parallel to the z-axis.

We now go over to the implicit definition of a surface.
We shall say that the surface 0  is defined by the equation

<p{x, y, z) =  0,

expressing by this only the fact that the coordinates of points on the 
surface satisfy the given equation. In this connection, there may 
exist points in space which satisfy the given equation and which do 
not belong to the surface 0.

Thus, defining a surface by an equation in the implicit form 
<p(x, y, z) =  0 is incomplete, in contrast to the parametric repre­
sentation considered above. Nonetheless, some problems concerning 
surfaces can be solved even if we have at our disposal only such an 
incomplete definition of the surface.

The following theorem plays an important role in the investigation 
of surfaces defined by the equation <p(x, y, z) =  0.

Theorem. Suppose < p ( x , y , z )  = 0 is a regular function of the 
variables x ,  y, z .  Suppose M  is the set of points in space satisfying the 
equation q>(x, y, z) =  0, and that (x0, yo, xo) is a point in M for which 
<px 2 +  (py 2 +  q>z2 ^  0. Then the point (xq,  yo, zo) has a neighborhood 
such that all the points of the set M belonging to this neighborhood form a 
regular elementary surface.
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Proof. Suppose for definiteness that <pz ^  0 at the point 
( x 0, y o ,  zo) .  By the implicit function theorem there exist positive 
numbers 6 and s  and a regular function ip(x,  y ) ,  defined in the 
region \ x  —  xo\  < d,  \ y  — yo| <  <5, such that all the points 
(x , y ,  ip(x,  y ) ) ,  \ x  — xo\  <  d, \ y  —  yo\  <  <5 satisfy the equation 
<p ( x , y ,  z)  =  0 where these points exhaust the set of all points in the 
parallelepiped \ x  — xq\  <  d,  \ y  — yo\  <  d,  \z — zo\ <  e, satisfying 
the equation cp(x, y ,  z)  =  0. The elementary surface, referred to in 
the theorem, is given by the equation

z  =  y>(x, y ) ,  \ x  —  xq\ <  d,  \ y  — y 0 \ <

This completes the proof of the theorem.

§ 3. Special parametrizations of a surface. A regular surface 
permits an infinite number of parametrizations in a neighborhood of 
each of its points. In fact, suppose

* =  x ( u ,  v ) ,  y  =  y [ u ,  v ) ,  z  =  z ( u ,  v)

is any parametrization of the surface in a neighborhood of the point
Q(U0, Vo).

If 9?(<x, /J) and ip (a, ji) are arbitrary regular functions satisfying 
the conditions

Mo =  <p{ao, /So), 
vo =  y>{oio, /So),

<p* n
Vfi

¥^0

at the point (ao, /So), then the equations

x  =  x{<p, ip), y  =  y((p,  ip), z  =  z(<p, ip)

also define a regular parametrization of the surface. This follows in 
an obvious manner from the fact that the formulas

m =  <p(cc, /S), v  =  ip(oi, (})

define a one-to-one and bicontinuous mapping of a sufficiently small 
neighborhood of the point (ao, /So) in the a, /9-plane onto some 
neighborhood of the point (mo, Vo) in the u,  a-plane.

In the investigation of regular surfaces, it is convenient to use 
special parametrizations. We shall consider the special para­
metrization which is most frequently used.

Suppose
x  =  x ( u ,  v) ,  y  =  y ( u ,  v) ,  z  =  z ( u ,  v)
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i s  a n y  r e g u l a r  p a r a m e t r i z a t i o n  o f  a  s u r f a c e  in  a  n e i g h b o r h o o d  o f  t h e  

p o i n t  <? (w0 , vq>). S i n c e  t h e  r a n k  o f  t h e  m a t r i x

/  xu yu
7 v  z v )

equals two, we can, without loss of generality, assume that the 
determinant

xu yu 
xv Vv

does not vanish at the point Q. By the implicit function theorem, 
the system of equations

x =  x(u, v), y ■= y(u, v)

is uniquely solvable in a neighborhood of the point Q. More pre­
cisely, there exist regular functions w =  <p(x, y) and v =  y>(x, y) 
satisfying the equations x = x(u, v) and y =  y(u, v) identically in a 
sufficiently small neighborhood of the point (xo, yo), *o =  x(uq, v0), 
yo =  y(w0, v0), where <p{x0, yo) =  w0, y>{x0, yo) =  v0.

From this it follows that our surface permits the parametrization

x =  a, y = p, z =  z(<p(a, P), Y>(a, P)) =  z(a, /3)

in a sufficiently small neighborhood of the point Q, or, what 
amounts to the same thing, that z =  z(x, y).

Suppose x =  x(u, v), y = y(u, v), z = z(u, v) is any regular 
parametrization of the surface in a neighborhood of the point
Q(uo, Vo).

Suppose we consider two differential equations

Ai(u, v)du +  Bi(u, v)dv =  0, 
i4a(w, v)du +  B 2(u, v)dv =  0

in a neighborhood of the point (wo, vo), where the differential 
equations satisfy the condition

A i B x 
A 2 B2

# 0

at the point (wo, vo).
If <p(u, v) =  u =  constant and y)(u, v) =  v =  constant is a so­

lution of these differential equations, satisfying the conditions 
<pu 2 +  <Pv2 7̂  0, f u 2 +  Wv2 ^  0 at the point (wq, vq) ,  then the surface
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permits a parametrization
x = x(ii, v), y = y(u, v), z = z(n, v)

in a neighborhood of the point 0, where

x{cp{u, v), y>(u, v)) = x{u, v), y{<p{u, v), %p{u, v)) =  y(u, v),
z(<p{u, v), yi{u, v)) = z(u, v).

In order to prove this assertion, it is obviously sufficient to show 
that

<Pu <Pv 
Vu y>v

^ 0

at the point [uq, vq). In fact, by assumption <p(u, v) =  constant is a 
solution of the first equation, and therefore <pudu +  q>vdv =  0 must 
be satisfied identically in virtue of the first equation. It follows that

<fu <Pv
A  i B i

Analogously, we have that

Vu Vv
A 2 b 2

If we assume that <Pu
Vu

Vv
Vv

0, then we easily get

A i B x 
A 2 b 2 =  0,

which is impossible. This completes the proof of the assertion.

§ 4. Singular points on regular surfaces. In the present 
section we ought to characterize the singular points on a surface as 
completely as we did for the singular points on curves. However, 
since we do not wish to unduly expand this book, we shall not do 
this. Therefore, we shall limit ourselves to the most general dis­
cussions on this point.

Suppose x =  x[u, v), y =  y(u, v), z = z{u, v) is a regular para­
metrization of a regular surface.

Suppose the rank of the matrix
/  xu yu zu \
\  xv yv zv j
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is less than two at the point Q(uo, vo) on this surface. The question is, 
how does one recognize whether or not the point is a singular point 
on the surface, or whether or not it is a regular point ?

We shall give sufficient criteria that the point Q be a singular 
point.

We shall make use of the vector equation of the surface, 
r = r(u, v). Then the condition that the rank of the above matrix 
be less than two is expressed by the fact that the vector product 
ru X rv vanishes.

Suppose P(u, v) is a point on the surface near Q; suppose that 
ru x rv 0 at this point. We consider the vector function

ru{u, v) X rv[u, v)
£(u, v)

|ru(u, v) x rv(u, v)|

Then a necessary condition that the point Q be a regular point 
is that the vector function £(u, v) tend to a definite limit as P -+Q.

Looking a trifle ahead, we note that £(u, v) is the unit normal 
vector to the surface at the point P. The normal to the surface is 
defined independently of any concrete parametrization of the 
surface. If the point Q is a regular point on the surface, then the 
normal to the surface in a neighborhood of this point depends 
continuously on the position of the point and, consequently, the 
unit vector £(u, v) tends to a definite limit, the unit normal vector 
to the surface at the point Q, as P  -> Q.

Suppose now that £(u, v) tends to some unit vector as P -» Q. We 
choose the point P'(u', v'), near Q, different from P, on the surface, 
and we define a>(P, P') by

(r(«, v) — r(u0, v0)) • (r(u\ v') — r(u0l v0))
>(P. P') = |r(u, v) — r(uo, vo)| |r{u', v') — r(uo, v0)|

Then the point Q will, as is well known, be a singular point if the 
greatest lower bound of the expression a>(P, P') is greater than — 1 
as P, P' -> Q.

We shall show this.
The expression a>(P, P') has a simple geometric interpretation. It 

is the cosine of the angle formed by the segments QP and QP' 
(Fig. 14). We shall assume that the point Q is a regular point and 
that r =  r(u, v) is a parametrization for which ru x rv is different 
from 0 at the point Q. We choose the points P and P' in a special
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way, namely we take them to be P(fto +  h, vq), P'(iio — h, vo). 
Then co{P, P') — 1 as h -> 0. Since the cosine is not less than
— 1, — 1 is the greatest lower bound of 
the expression co(P, P') as P, P' -> Q.

Thus, if the greatest lower bound of 
the expression co(P, P') is not equal to
— 1 as P, P ' -> Q, then Q is, as known, 
a singular point.

In conclusion, we shall say a few 
words about singular points on a surface 
defined by the equation <p(x, y, z) =  0.

First of all, only those points where 
<Px = <Py =  <Pz =  0 can be singular points 
on the surface. In fact, if one of the F ig . 14

partial derivatives, for example <pz, is
^  0 at the point Q, then the surface permits a regular para- 
metrization of the form z = y(x, y) in a neighborhood of the 
point Q, from which it follows that Q is a regular point.

Suppose <px = <py =  <pz = 0 at the point Q(xo, yo. *o) on the sur­
face. Expanding the function <p by the Taylor formula in a neighbor­
hood of the point Q, we obtain

« ll(*  — *o)2 +  « 2 2 (y — yo)2 +  «33(* — *o)2 +  2fl 12 (* — *o) (y — yo) +  
2«i3(* — x0)(z — z0) +  2«23(y — yo)(z — zo)+ R = 0.

It turns out that if the quadratic form 2  is definite, i.e.
vanishes only when all the f* equal zero, then in a sufficiently small 
neighborhood of the point (xo, yo, zo) none of the points in space, 
except the point (xq, yo, zo), satisfies the equation <p(x, y, z) =  0. 
Therefore, the surface 0  cannot be defined by the equation <p=0 in 
a neighborhood of the point Q.

Remark. Frequently a surface defined by the equation 
<p(x, y, z) =  0 is understood to be the geometric locus of points in 
space, satisfying the equation <p =  0. With such a definition of a 
surface, the point in the case just considered is called an isolated 
singular point.

If the quadratic form is alternating, but does not factor
into the product of two linear forms, the geometric locus of points in 
space which arc near the point (*o, yo, zo) and satisfy the equation 
(p{x, y, z) =  0 has a form approximating that of a second degree
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conic, whose equation is <p(x, y, z) —  R =  0. If the surface is defined 
as the geometric locus of points in space which satisfy the equation 
<-p(x, y, z) =  0, then in this case the point (xq, yo, zo) is called a 
conical point.

If the quadratic form £  auh£] factors into the product of two 
linear forms, various cases may arise. The point may be a singular 
point (for example, the point (0, 0, 0) on the surface xy — z3 =  0) 
or a regular point (for example, the point (0, 0, 0) on the surface 
xy — xz2 =  0). In this case, it is necessary to investigate further 
terms in the expansion of the function <p.

E xercises and Problem s fo r  Chapter IV

1. Write the equation of the surface generated by half-lines which 
emanate from the point (a, b, c) and intersect the parabola

z =  0, y2 =  2 px.
Answer: (bz —  cy)2 =  2p{z —  c)(az —  cx).
2. Find the equation of the cylinder with generators parallel to 

the straight line x =  y =  z, described around the ellipsoid

x2 +  4y2 9z2 =  1.

Answer: (x +  4y -f 9z)2 — 14(x2 +  4y2 +  9z2) =  0.
3. Find the geometric locus of the projections of the center of 

the ellipsoid
x2 y 2 z 2
----- h —  H----- =  1a2 &2 c2

onto its tangent planes.
A n s w e r :  (x2a2 +  y2b2 +  z2c2) =  (x2 +  y2 +  -z2)2-
4. Write the equation of the surface which is obtained by ro­

tating the curve
x =  q>{u), z =  ip(u) ,  y =  0

about the z-axis.
A n s w e r :  x  =  cp{u) cos v ,  y = <p(u) sin v,  z  =  y>(u).
5. The straight line g moves in space in such a way that the 

following conditions are satisfied:
a) the straight line always intersects the z-axis orthogonally;
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b) the point of intersection of the straight line g with the 2-axis 
moves uniformly with velocity a ;

c) the straight line rotates uniformly about the z-axis with 
angular velocity co.

Write the equation of the surface which the straight line g de­
scribes as it moves.

A n s w e r  : x =  v cos com, y = v sin com, z =  au.
Here m is the time, and v is the distance of a point on the surface 

from the z-axis. The surface is called a simple helicoidal surface or 
a helicoid.

6. Suppose three families of surfaces are prescribed by the 
equations <p(x, y, z) =  m =  constant, ip(x, y, z) =  v =  constant, 
X(x, y, z) = w =  constant.

Prove that if the Jacobian

D (<P> V> x) , 0 
D{x, y, z)

at the point (xo, yo, zq), then all three families can be defined in a 
neighborhood of this point by the vector equation r =  r{u, v, w). 
The surfaces of distinct families are obtained by setting m =  con­
stant, v =  constant, w =  constant.

7. A translation surface is a surface generated by the successive 
displacement of one curve along another curve.

Prove that a translation surface can be defined by the equation

r = <p(u) +  yj(v),

w here tp and ip are v ec to r  fu n ction s o f w hich  th e  first d ep en ds o n ly  
on m, and  th e secon d  o n ly  on v.

8. Show that the surface which is the geometric locus of the mid­
points of segments whose endpoints lie on two given curves, is a 
translation surface.

9. Find the singular curve on the pseudosphere

x =  sin m cos v, y =  sin u sin v, z =  cos u -J- In tan m/2. 

A n s w e r  : The singular curve is m =  nj2.
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FUNDAMENTAL CONCEPTS FOR SURFACES 
WHICH ARE RELATED TO THE CONCEPT 

OF CONTACT

§ 1. Tangent plane to a surface. Suppose 0  is a surface and P 
is a point on 0;  let a be any plane passing through the point P. We 
take a point Q on the 
surface 0  and denote 
its distance from the 
point P and from the 
plane a by d respecti­
vely h (see Fig. 15).

We shall call the 
plane a the tangent 
plane to the surface 0  
at the point P if the 
ratio hjd -> 0 when 
Q -+P. Fi&- 15

T h e o r e m . A smooth 
surface has a unique tangent plane at each of its points.

If r = r(u, v) is any smooth parametrization of the surface, then the 
tangent plane at the point P(u, v) is parallel to the vectors ru(u, v) and 
rv{u, v).

P r o o f . We shall assume the surface 0  has a tangent plane a  at 
the point P(u, v). Suppose n is a unit vector which is perpendicular 
to the plane a. The distance d from the point Q{u-\- Au, v +  Av) to 
the point P(u, v) equals \r(u +  Au, v +  Av) — r(u, t/)]. The distance 
from the point Q to the plane a equals \{{r{u +  Au, v +  Av) — 
r(u, v)) -n|. Hence we have

hfd | (r(u Au, v +  Av) — r(u, v)) -n\ 
|r(u +  Av, v +  Av) — r(u, i;)|

According to our definition, hjd 0 when Au and Av independently
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tend to zero. In particular,
|(r(u -f- Au, v) — r(u, v)) -n\ 

|r(u +  Au, v) — r(u, u)|
as Au -> 0.

But
| (r(u +  Au, v) — r(u, v)) -n\ 

|r(u +  Au, v) — r(u, w)|
r(u +  Au, v) — r(u, v) 

Au
r(u +  Au, v) — r(u, v) 

Au

|ru(u, v)-n
Iru{u, w)|

Thus we have
ru(u, v) -n =  0.

Since ru(u, v) ^  0 (ru(u, v) x rv(u, v) ^  0), equality, ru(u, v) - n = 0, 
is possible only in the case when the vector ru(u, v) is parallel to the 
plane a.

One shows in an analogous way that the vector rv(u, v) is also 
parallel to the plane a and inasmuch as the vectors ru{u, v) and 
rv(u, v) are different from zero and are not parallel, (ra(u, v) x 
rv(u, v) yt 0), the tangent plane is unique, provided it exists.

We shall now prove the existence of the tangent plane. Suppose 
the plane a is parallel to the vectors ru{u, v) and rv(u, v). We shall 
show that it is the tangent plane to the surface at the point P(u, v).

We have

h/d = (r(u +  Au, v +  Av) — r(u, v)) •n\ 
|r(u +  Au, v +  Av) — r(u, i>)|

\(ru-n)Au +  (rv-n)Av +  eiVAu2 +  Av* \ 
\ruAu +  rvAv +  E2V Au2 +  Av2 \

Au . Av
{ru-n)

V Au2 +  Av2
+  (rv-n)

V Au2 +  Av2
Au Av

• ru
\ VA u2 +  Av2 v V A u2 +  Av2

where leij and Ie2| tend to zero when Au, Av -*■ 0.

ei

+  62

Pogorelov,  Diff. Geometry.
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We shall assume that there exists a sequence of pairs Au, Av 
tending to zero such that the corresponding ratio hjd >  e >  0. The 
sequence of pairs Au, Av contains a subsequence for which the ratios

Au Av
—j = =  and — = =
VAu 2 Av2 V A u2 +  Av2

will converge. Suppose £ and rj are the limiting values of these 
expressions. Obviously, £2 +  r\2 =  1. Passing to the limit of the 
ratios hjd with respect to the chosen subsequence of the sequence of 
pairs Au, Av we obtain

hjd ■> \(ru -n)£ +  {rv-n)rj \
\ru£ +  *V? |

Since ru-n = 0, rv-n = 0, and £ru +  r]rv ^  0 (ru and rv are not 
parallel), hjd -*■ 0. But this contradicts the fact that all the values of 
hjd near the limit are, by assumption, greater than e >  0.

This completes the proof of the theorem.
It is not difficult to write down the equation of the tangent plane 

once we know its direction.
Suppose f is the radius vector of any point on the tangent plane 

to the surface at the point P(u, v). Then the vectors f — r(u, v), 
Yu{u, v), rv(u, v) are parallel to the tangent plane and, consequently, 
their triple product vanishes. It follows that the equation of the 
tangent plane is

(f — r(u, v), ru{u, v), rv(u, v)) = 0.

Suppose the surface is defined by the equations 

x =  x(u, v), y = y(u, v), z = z(u, v).

It follows from the vector equation of the tangent plane that the 
equation of the tangent plane corresponding to this representation 
of the surface will be

x — x(u, v), y —  y(u, v), z — z(u, v) 
xu{u, v) y u{u, v) zu(u, v)
Xv(u, v) yv{u, v) zv(u, v)

=  0.

The equation of the tangent plane to the surface, given by the 
equation z =  z(x, y), is obtained from the equation just found. It 
suffices to note that defining the surface by means of the equation
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z = z(x, y) is only an abbreviation for the parametric representation

x = u, y =  v, z =  z(u, v).

Therefore, the equation of the tangent plane in the case when the 
surface is defined by the equation z =  z(x, y) will be

or

x — x, y — y, z — z 
1 0 zx(x, y)
0 1 zy(x, y)

=  0,

Z — z _  f ix  — x) — q{y — y) =  0,

where p and q denote the first partial derivatives of the function 
z(x, y) with respect to x and y, respectively.

Finally, we find the equation of the tangent plane for the case 
when the surface is defined by the equation <p(x, y, z) =  0. Suppose 
(x, y, z) is a point on the surface at which <pxz +  <py 2 -{- <pz2 0 and 
x =  x(u, v), y =  y(u, v), z — z(u, v) is any smooth parametrization 
of the surface in a neighborhood of this point. If we replace x, y, z in 
the equation of the surface by x(u, v), y(u, v), z(u, v) we obtain an 
identity with respect to u and v.

Differentiating this identity, we obtain

<Px%u +  f y y u  +  <Pz2u — 0,
<pxx v " F  (PyVv “1“  f z ^ v  =  0

at the point (x, y, z). If we consider these equations as a system of 
equations in <px , <Py, <pz then, solving it, we obtain

<Px <Py <Pz

yu zu zu Xu xu yu
yv zv Z y X y X y yv

In the case of the parametric representation of the surface, the 
equation of the tangent plane is

(x yu
yv zv +  (y -  y)

Z y ,

Zq)
X u

xv +  (z — z)
xu
X y

yu
yv

=  o.

Taking the proportion obtained above into consideration, we ob­
tain the equation of the tangent plane to the surface <p(x, y, z) = 0  

at the point (x, y, z) in the form
(x — x)<px +  (y — y)<pv +  (z — z)<pz =  0.
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The normal to the surface at the point P is the straight line passing 
through P  perpendicular to the tangent plane at this point.

Writing down the equation of the normal to the surface, once we 
know the equation of the tangent plane, for the different cases of 
definition of the surface, does not present any difficulty and hence 
is left to the reader as an exercise.

§ 2. Lemma on the distance from a point to a surface. 
Contact of a curve with a surface. Suppose 0  is a surface and 
Q is any point in space. The distance of the point Q from the surface 
0  is the greatest lower bound of the distances of points on the 
surface from the point Q. If the point Q lies on the surface then, 
obviously, its distance from the surface equals zero.

Lemma. Suppose 0  is a smooth surface defined by the equation 
q>(x, y, z) =  0. Suppose <px 2 +  q>y 2 +  <pz2 #  0 at the point 0(xo, yo,2o) 
on the surface.

I f  Q(x, y, z) is a point in space near 0, but not lying on the surface, 
then substituting the coordinates of the point Q into the equation of the 
surface we obtain a quantity X which has the order of the quantity h, 
which is the distance of the point Q from the surface, in the sense that the 
ratio X/h tends to a definite limit, different from zero, when the point Q 
tends to 0 , remaining outside the surface.

Proof. Since the point 0  belongs to the surface 0, there exists an 
e >  0 such that all the points in space at a distance less than or 
equal to e from the point 0  and satisfying the equation <p(x, y, z)= 0, 
belong to the surface 0 .

Suppose the point Q is at a distance less than e/2 from the point 0. 
Suppose P n is a sequence of points on the surface whose distances 
from Q tend to the distance from this point to the surface 0. The 
points P n form a bounded sequence (their distances from Q are less 
than e/2), and therefore the sequence P n contains a convergent 
subsequence. Without loss of generality, we can assume that the 
sequence P n itself converges to some point P. In virtue of the 
continuity of the function cp in a neighborhood of the point 0  the 
point P satisfies the equation <p(x, y, z) =  0. It follows from this 
that the point P  belongs to the surface 0. Thus, if a point Q is 
sufficiently close to 0 , the greatest lower bound of the distances of 
points on the surface from the point Q is attained for some point P 
belonging to the surface.
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We shall now show that the segment PQ is directed along the 
normal to the surface at the point P. Suppose r =  r(u, v) is any 
smooth parametrization of the surface at the point P  and that a is 
the radius vector of the point Q. Since the function (r(u, v) — a)2 
attains its minimum at the point P, we must have

(r — a)-ru =  0,
{r — a)-rv =  0,

but this means that the segment PQ is directed along the normal to 
the surface at the point P.

Suppose x, y, z are the coordinates of the point P  and that f, rj, 'Q 
are the direction cosines of the normal to the surface at the point P. 
The coordinates of the point Q are x, y, z and h is the distance be­
tween the points P  and Q (Fig. 15).

We have
x =  x +  £h, y = y +  r\h, z =  z +  t,h.

Since the point P  belongs to the surface, we have 

<p(x +  £h,y +  rjh, z +  £h) =  0.

It follows that

?>(t, y, z) +  h(<px£ + <pyrj +  <pzC) + h2R =  0,

where R is bounded in a neighborhood of the point 0.
Dividing this equality by h and passing to the limit as Q -> 0, we 

obtain
cp{x, y, z)

-----yT--------* — (‘Pzf +  VvV +  VzOiO)-

The expression in the right member is different from zero 
inasmuch as it is the scalar product of the parallel nonzero vectors 
(f, rj, £) and (<px, <py, <pz).

This completes the proof of the lemma.
We shall now apply the lemma just proved to the problem of 

contact of a curve with a surface.
Suppose 0  is an elementary surface and let y be a curve having 

the point 0  in common with 0. Suppose h is the distance of an 
arbitrary point Q of the curve from the surface 0  and let d be the 
distance of the point Q from the point 0. We shall say that the



86 Chapter V, § 2

curve y has contact of order n with the surface if hjdn -*■ 0 when 
Q -+ 0 .

Theorem. Suppose 0  is an elementary regular surface and y is a 
regular curve having a common point 0. Suppose <p(x, y, z) =  0 is the 
equation of the surface in a neighborhood of the point 0  where 
q>x2 +  q>y 2 +  <Pz2 r  0 at the point 0 \ x  = x(t), y =  y(t), z — z(t) is a 
regular parametrization of the curve y in a neighborhood of the point 0 .

Then a necessary and sufficient condition that the curve y have 
contact of order n with the surface 0  at the point 0  is that the conditions

d dn
<p{x{t),y{t),z(t)) =  0 , —  y =  0, •••, — - ?  =  0

be satisfied for the value of t corresponding to the point 0 .
Proof. Suppose the value t = to corresponds to the point 0. As 

Q ^ O , t-+ t0.
According to the lemma, <p{x(t), y(t), z(t)) is of order equal to the 

distance of the point Q from the surface 0. It follows that a neces­
sary and sufficient condition that the curve y have contact of order 
n with the surface 0  is that

Since

<p(x(t), y(t), z{t)) 
q>(x(t),y(t),z(t)) \ t - t o \ n

1 r-v. O

1 1 o n

t -  to

’’(O ~  r{to) 
t — to

\r'(to)| 0̂,

this means that
<p{x{t), y(t), z(t)) 

{t -  k )n
0 as t to-

But this is possible if and only if the function <p{x(t), y(t), z(t)) and 
its derivatives up to and including the n-th order vanish for t=to- 

This cofnpletes the proof of the theorem.
We shall now find the osculating sphere to the curve, i.e. a sphere 

which h^s contact of order three with the curve.
Suppose r =  r(s) is the natural parametrization of the curve. 
The equation of the sphere is (r — a) 2 = R2, where a is the
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position vector of the center of the sphere and R is its radius. If we 
substitute r = r(s) into this equation and differentiate three times 
with respect to s we obtain

(r — a)-r =  0,
(r — a) -kyn + 1 = 0 ,

{r — a) • (ki'n — £i2r  — k\k2b) =  0.
It follows that

(r — a) -kikib +  ki'/ki — 0.
Thus,

(r — a)-r =  0,
(r — a) -n =  — Ijki,

(r -  a)-b =  -  Jn'IWki.
Hence we have

• - ' ■ - • ' - n i M S ) '

a = r-\- (a — r )= r - \-  n)k\ +  bki'lk^kz.

§ 3. Osculating paraboloid. Glassification of points on a 
surface. Suppose 0  is a regular (twice continuously differentiable) 
surface and let P be a point on 0. Suppose U is a paraboloid 
containing the point P  with axis parallel to the normal to the 
surface at the point P. Denote the distance from any point Q on the 
surface to the paraboloid and to the point P respectively, by h and d.

The paraboloid U is called the osculating paraboloid of the surface 
at the point P if the ratio hjd2 0 as Q -> P. In this connection,
we do not exclude the cases when the paraboloid degenerates into a 
parabolic cylinder or into a plane.

Theorem. At every point P of a regular (twice continuously 
differentiable) surface 0  there exists a unique osculating paraboloid U, 
which in particular cases may degenerate into a parabolic cylinder or a 
plane.

Proof. We introduce rectilinear cartesian coordinates x, y, z in 
space taking the point P  for origin of coordinates and the tangent 
plane at the point P  as the x, y-plane, and the normal to the tangent 
plane, i.e. the normal to the surface, as the 2-axis. We shall show 
that the surface 0  may be defined in a neighborhood of the point P
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by means of the equation z = <p(x, y) where <p is a twice differentiable 
function of x  and y such that <px =  q>y =  0 at the point P. In fact, 
the surface 0 , as we know, permits at least one representation of the 
three forms, z = <p(x, y), or y =  yi(x, z), or x = %\y, z), where q>, yi 
and % are twice continuously differentiable functions. For our 
choice of coordinate axes, the requirement that the functions y) and 
% be twice differentiable excludes the second and third represen­
tations. In fact, if the surface 0  can be defined by means of the 
equation y =  y>(x, z) or x = %(y, z) in a neighborhood of the point 
P, then the equation of the tangent plane at the point P  would have 
the form y — y>xx — ipzz =  0, or x — %yy — xzz =  0. In neither one 
of these cases do we obtain the plane z =  0, which is the tangent 
plane by assumption. Thus, the surface 0  permits a representation 
by means of the equation z =  <p(x, y) in a neighborhood of the point 
P, and since the tangent plane to the surface 0  at the point P, 
z — <pxx — <pyy — 0, must be the x, y-plane, <px and (py vanish at the 
point P. This completes the proof of the assertion.

The equation of the paraboloid U, containing the point P and 
having its axis parallel to the 2-axis, and also its degenerate 
forms, the parabolic cylinder and plane, have the form

z — (a\x +  biy +  anx2 +  a\^xy +  â %y2) =  0.

We shall assume that the osculating paraboloid U exists at the 
point P. We shall show that it is unique. Suppose

2 — (ayx +  biy +  a\\x2 -f a^xy  -(- «22y2) =  0

is the equation of the osculating paraboloid. According to the lemma 
of the preceding section, substituting the coordinates of the point Q 
on the surface into the equation of the paraboloid we obtain a 
quantity X which has the same order as the distance of the point Q 
from the paraboloid in the sense that the ratio Xjh tends to a limit 
when Q -> P. It follows from this that Xjd2 -» 0 as Q P.

We expand the function <p(x, y) according to Taylor’s formula in a 
neighborhood of the origin of the coordinate system. We obtain

?{%> y) =  Urx2 +  2sxy +  ty2) +  (x2 + y2)ex(x, y),

where r, s, t denote the derivatives of the function <p and e\(x, y) ->0 
when x, y -> 0. Substituting the coordinates x, y, q>(x, y) of the point
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Q on the surface into the equation of the paraboloid, we obtain

A =  — axx — a2y +  H(r ~  2 an )x2 + 2 {s — a12)xy + (t — 2 a22)y2}+
+  {x2 +  y2)ei(x,y).

The square of the distance of the point Q from P  is

d2 =  x2 +  y2 +  <P2{x, y) =  x2 +  y2 +  (x2 +  y2)e2(x, y),

where e2(x, y) 0 as Q -> P.
Since the ratio A/tf2 tends to zero when x and y independently 

tend to zero, this will hold if and only if, say, y =  0 and x -> 0. But 
in this case,

,, ~  aix + \(r — 2 an )x2 +  x2ex
Ad2 = -------------- -----------------------

x2 +  x2e2

and, consequently, kjd2 -> 0 as x -> 0 only when a\ =  0 and 2 an=r. 
It can be shown, in an analogous manner, that a2 =  0 and 2a22 =  t. 
Finally, we show that a\ 2 = s. To this end, we assume that x and y 
tend to zero, but in such a way that x always equals y. Then

A/ 2̂ =  (s ~  a*2)*2 +  x 2e ±
2 x2 +  2x 2e2

It is clear from this that the condition kfd2 0 as x -> 0 implies the 
equality a\ 2 =  s.

Thus, if the osculating paraboloid at the point P exists, it is 
unique. Its equation with respect to the coordinate system we have 
chosen is
(*) z — \{rxz +  2 sxy +  ty2) = 0.

We shall now show that the paraboloid (*) is indeed the oscu­
lating paraboloid.

In fact, for this paraboloid we have

Xjd2 =
(x2 +  y2)e i 

x2 +  y2 +  {x2 +  y2)e 2
-> 0 as x, y -> 0.

This completes the proof of the theorem.
We shall now find the osculating paraboloid at the point P(u,v) 

in the case of an arbitrary parametric representation of the surface 
r = r(u, v).

We introduce, in space, the cartesian coordinates x, y, z, taking
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the point P as the origin of coordinates, and the directions of the 
vectors ru, rv, n as the directions of the coordinate axes. The vectors 
ru, rv> n themselves are taken as basis vectors.

Consider the paraboloid

z = ${(r%u-n)x2 + 2 {ruv-n)xy + {rvv-n)y2}.

We shall show that it is the osculating paraboloid at the point P. 
Suppose Q(u +  Au, v +  Av) is a point on the surface near P. 
We draw a straigth line through Q parallel to the normal at the 

point P. This line cuts the paraboloid at the point Q' with coordi­
nates x =  Au(l +  ci), y =  Av( 1 +  £2), z, where ei and £2 -> 0 as 
Au, Av -»■ 0.

The distance from the point Q to Q' is

h' =  |(r(u +  Au, v +  Av) — r(u, v))-n —
— \{{rUu-n)x2 +  2 (ruv-n)xy + (rvv-n)y2}\.

Expanding r{u -f- Au, v +  Av) according to the Taylor formula and 
replacing x and y by Au(\ +  d) and Av{\ +  £2), we obtain

h' =  (Au2 +  Av2)e,
where e -> 0 when Au, Av -> 0.

The distance between the points Q and P  equals

\r(u +  Au, v +  Av) — r(u, v)[ =  \ruAu +  rvAv-\- eVAu2 +  Av21.

In order to show that the indicated paraboloid is the osculating 
paraboloid, it suffices to show that the ratio h'jd2 0 as Q -> P, 
since the distance from the point Q to the paraboloid is less than or 
equal to h'. But

h'/d2
{Au2 4- Av2)s 

{ruAu -f rvAv 4- e'VAu2 4- Av2 )2

And since
ruAu 4- rvAv 
VAu2 4- Av2

/ yuAu 4- rvAv ^A2
'V An2 4- Av2 f

is bounded below as Au, Av 0 and e and e' 0, h'jd2 -v 0.
This completes the proof of the assertion.
The existence and uniqueness of the osculating paraboloid at
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every point of a regular surface permits us to make the following 
classification of points on a surface.

1. A point on a surface is called an elliptic point if the osculating 
paraboloid at this point is an elliptic paraboloid (see Fig. 16a).

2. A point on a surface is called a hyperbolic point if the osculating 
paraboloid at this point is a hyperbolic paraboloid (Fig. 166).

3. A point on a surface is called a parabolic point if the osculating 
paraboloid at this point degenerates into a parabolic cylinder (Fig. 
16c).

4. A point on a surface is called an umbilical point if the osculating 
paraboloid at this point degenerates into a plane (i.e. the tangent 
plane to the surface at this point) (see Fig. 16d).

§ 4. Envelope of a family of surfaces, depending on one or 
two parameters. Suppose {5} is a family of smooth surfaces 
depending on one or two parameters. A surface F is called the 
envelope of the family if the following conditions are satisfied: 
1) for every point P on the surface F one can find a surface in the 
family which is tangent to F  at the point P, 2) every surface in the 
family is tangent to F, 3) no surface in the family has a region in 
common with F.

Example. A smooth surface which does not contain pieces of a 
plane, is the envelope of its tangent planes. The family of tangent 
planes may be either a one parameter (cylinder) or a two parameter 
(e.g. sphere) family.

In geometry and its applications, the problem frequently arises of 
finding the envelope for a given family. This problem is resolved, to 
the extent known, by the following theorems.

Theorem 1. Suppose {F„} is a family of smooth surfaces, de­
pending on the parameter a, defined by the equations

<p(x, y, z, a) =  0.
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Then, if the smooth surface F is the envelope of this family, it satisfies 
the equations

<p(x, y, z, a) =  0, q>Jx, y, z, a) =  0

in the sense that for every point (x, y, z) on the surface F one can give 
a value of a such that both the equations <p =  0 and <pa =  0 are satisfied 
by the four quantities x, y, z, and a.

Theorem 2. The envelope of a two parameter family of smooth 
surfaces

<p(x, y, z, at,p) = 0

satisfies the equations

(fix, y, z, a, P) =  0, cpjx, y, z, a, P) =  0,
<pg{x, y, z, a, P) =  0.

In order to simplify the discussion, we shall make some auxiliary 
assumptions concerning the nature of enveloping of the surfaces of 
the family by the surface F. Namely, we shall assume, that for every 
point P of the envelope we can specify a region Gp of variation of 
the parameters of the family, satisfying the following conditions:

1. For each point Q of the surface F, near P, only one surface of 
the family can be found having parameters belonging to Gp.

2. If u, v is any smooth parametrization of the surface F  and 
<x{u, v), p(u, v) (which reduces to only a(«, in the case of a one 
parameter family) are parameters of the surface, tangent to F at 
the point (u, v), then a(w, v) and P{u, v) are smooth functions of 
u and v.

Under such auxiliary assumptions concerning the nature of 
enveloping F  by surfaces of the family, the proof of both theorems 
is rather easy. We begin with the first theorem.

The surface of the family which is tangent to the surface F  at the 
point (u, v) has parameter a(u, v). Hence, we have the identity

<p{x{u, v), y{u, v), z(u, v), a (u, v)) =  0.

Differentiating this identity with respect to u and v, we get

( f x x u  +  f y y u  +  <Pzz u  +  q P a ^u  =  0 ,

<Pxx v T" qpyyv T" fzZv +  =  0-
But, in virtue of the fact that the surfaces F and Fa are tangent, we
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<PxXU +  ’PvVu "T <fzZU — 0, 
<Pxx v 4" VyVv "T <fzzv =  O’

93

have

Therefore,
<Paa« - 0. VaPv = o.

Let us assume that <pa ^  0 at the point P. Then (pa ^  0 in some 
neighborhood of the point P  also and, consequently, a.u =  <xv =  0 
in this neighborhood, i.e. a =  constant. But this means that the 
envelope F  has a region in common with the surface Fa of the 
family, which is impossible. So, <pa =  0 at the point P. This proves 
Theorem 1.

We shall prove Theorem 2. As in the case of a one parameter 
family, we have the identity

<p(x(u, v), y(u, v), z(u, v), <x(u, v), /S(«, v)) =  0.

Differentiating this identity and using the condition that the 
surfaces of the family are tangent to the envelope, we obtain

9>ac*tt +  < p $ u  =  0,
(*) +  <PpPv =  0.

We shall assume that at least one of the two quantities <pa and 9?p 
does not vanish at the point P. Then it is also different from zero in 
some neighborhood of the point P. It follows from equalities (*) that

« «  av _  Q

in this neighborhood, and this means that the functions a and fi 
which are parameters of the family are dependent. But this is 
impossible, inasmuch as the family must essentially depend on two 
parameters. So, <pa =  <pp =  0 at the point P. This completes the 
proof of Theorem 2.

§ 5. Envelope of a family of planes, depending on one para­
meter. Suppose F  is the envelope of a one parameter family of 
planes. We shall explain the structure of the surface F.

Suppose
r-b( cl)  +  a (a) =  0 

is the equation of the planes of the family in the vector form.
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Without loss of generality, we can assume that the vector 6 is a 
unit vector, inasmuch as the equation can always be divided by 
|6(a)| (6(a) =£ 0). Further, we must exclude the case when 6 does not 
depend on a, since a family of parallel planes does not have an 
envelope. In fact, 6 is the normal vector to the envelope, and there­
fore b-dr =  0. If 6 is a constant vector, it follows from this that 
6 -r =  constant, i.e. the envelope is a plane. A plane of the family, 
tangent to the envelope, has, in this case, a region in common with 
it, which is impossible.

In the sequel, the independence of 6 and a will be excluded by a 
somewhat greater requirement. Namely, we shall assume that 
6'(a) ^  0.

The envelope F  satisfies the equations 
(*) r -6 +  a =  0, r -6' +  «' =  0.

We shall denote the set of all points in space satisfying the system 
(*) by M , and we shall first explain the structure of the set M. 
Obviously, if the point (#o, yo, ô) belongs to the set M, then the 
entire straight line defined by the equations

r-b(<x0) +  a(<xo) =  0, r -6'(a0) +  a'(<x0) — 0,

where ao is the value of the parameter which together with xq, yo, zo 
satisfies system (*), also belongs to M. Thus, the set M  consists of a 
one parameter set of straight lines in space.

We consider three planes

(**) r -6 +  a =  0, r -6' +  a' =  0, r -6" +  a" =  0,

of which the first two define the envelope. The following three 
fundamental assumptions can be made regarding these three planes:

1. The three planes (**) have no common points for any value ofa.
2. The three planes (**) intersect in a unique point S which is the 

same for all values of a.
3. The three planes (**) intersect in the point S(a) whose position 

depends essentially on a in this sense that if f(a) is the position 
vector of the point 5(a), then f'(a) ^  0.

We shall consider the first case. Since the planes (**) do not 
intersect, they are parallel to some straight line. Suppose n(a) is a 
unit vector along this line. We then have

b-n = 0 , b'-n = 0 , b"-n = 0 .
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Differentiating the first two equalities, we obtain

b'-n +  b-n' =  0, b"-n +  b'-n' =  0.

It follows that b-n' =  0, b'-n’ =  0. Since, furthermore, n'-n =  0, 
we have n' =  0. So, n does not depend on a. Further, the vector 
6 x 6' is nonzero, and its direction is constant, since it is parallel 
to the vector n {b-n =  0, b'-n =  0). The position vector of any 
point in M  can be represented in the form

r =  A6 +  fib' +  v(b x 6').

A and fi are easily found from equation (*). And we then obtain the 
equation of the position vector of M  in the form

r =  ( -  «)6 +  (—0'/6'2)6' +  v{b x 6'),

where a and v are the parameters. It is easy to verify that ra x r „ ^ 0. 
Thus, in the first case, M  is a cylindrical surface. The envelope F has a 
region on this surface.

In the second case, we obtain a conic surface. Its equation is the 
same as for a cylindrical surface, but the direction of the vector 
6 x 6' depends on a. If we take the point 5  for the origin of 
coordinates, then, as follows from equation (*), a — 0, a' =  0, and 
the equation of the surface assumes the simple form

r = v (b x  6').

As in the first case, it is easy to verify that ra x rv ^  0 everywhere 
except at the point S{v =  0).

We now consider the third case. The position vector of any point 
in M  can be written in the form

(***) r = f  -\- v{b X 6').

For fixed a, the vector function r gives the straight line of inter­
section of the planes (*). We shall show that the vectors r' and 
6 x 6' are parallel.

In fact, we have

f-b  - |-0 =O, f-b' -\- a' = 0, f - 6" +  a” = 0.

Differentiating the first identity and subtracting the second 
equation from it, we obtain f - b  =  0. Analogously, from the second 
and third equations we obtain ?' -b' =  0, whence we have r ' | [6 X 6'.
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Now it is not difficult to show that the vector function (***) 
defines some surface in the region v ^  0. In fact,

ra x rv = (?' +  v{b x b')') x (6 X b') =  v(b x b") x {b x b') # 0 .

Thus, in the neighborhood of every point not belonging to the curve 
r =  f(a), the set M  represents a surface. We shall show that this 
surface is generated by the tangents to the curve r =  f(a). In fact, 
for fixed a equation (***) is the equation of the tangent to the curve 
r =  f(a), since the vectors r' and b X b' are parallel. Thus, the 
surface M  is generated by the tangents to the curve r = f.

The results of the present section may be summarized by the 
following theorem.

Theorem. The envelope of a one parameter family of planes is, in 
most cases, a region either on a cylindrical surface or on a conic surface, 
or on a surface generated by the tangents to a space curve.

It is easy to check directly that conversely, in each of these cases 
the tangent planes form a one parameter family. It is suggested that 
the reader verify this fact as an exercise.

Exercises for Chapter V

Write the equation of the tangent plane to the ellipsoid
x2 y2 z2
T5- +  TT +  T»-= 1fl2 J2

at the point (x ', y ', z').

xx yy zz 
Answer : ------- 1----------1-------=  1.

fl2 ^  b2 ^  C2

2. Write the equation of the tangent plane to the sphere

x — a cos v sin u, y = a cos v cos u, z = a sin v

at the point (0, 0, a).
Answer : z — a =  0.
3. Show that all the tangent planes to the surface defined by the 

equation
z - x(p{yfx)

pass through the origin of coordinates.
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4. Show that the surfaces

x2 +  y2 +  z2 =  <*x, 
x2 +  y 2 +  z2 =  fty, 
x2 +  y2 +  z2 =  y2

intersect orthogonally.
5. Show that the normals to the surface

x — cp{u) cos v, y =  (p(u) sin v, z = ip(u)

intersect the 2-axis.
6. Find the surface formed by the normals to the surface

Answer: Hyperbolic paraboloid.
7. Write the equation of the osculating paraboloid to the el­

lipsoid defined in Exercise 1 at the point (0, 0, c).

8. Investigate the character of the points (elliptic, hyperbolic, 
parabolic, umbilic) on second degree surfaces.

9. Find the position of the center and the radius of the osculating 
sphere of the helix

at the point (a, 0, 0).
Answer: Center (— b2/a, 0, 0); radius a +  b2/a.
10. Find the envelope of the family of spheres

(x — a) 2 +  y2 +  z2 =  1 (— co <  a <  oo).

Answer: Cylinder y 2+  z2 =  1.
11. Find the envelope of the family of planes which form a 

tetrahedron of constant volume with the coordinate planes, x, y, 
z >  0.

Answ er: xyz =  constant.

y — x tan 2

along the straight line
y — x, z =  n/4.

x = a cos t, y = a sin t, z =  bt
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P r o b l e m s  a n d  T h e o r e m s  f o r  Ch a p t e r  V

1. Prove that if a smooth surface 0  and a plane a have only one 
point P in common, then the plane a is the tangent plane to the 
surface at the point P.

2. Prove that the tangent planes to a translation surface
r = U (u) +  V(v) 

along every translation curve (curves u =  constant and v =  con­
stant) are parallel to some straight line.

3. Prove that the family of confocal ellipsoids, one sheeted and 
two sheeted hyperboloids, defined, as is known, by the equations

x2 y2 z2----------- 1-----  1------------ =  l
a2 -  X b2 -  X c2 -  A

intersect orthogonally.
4. Prove that if a surface is tangent to a plane along some curve, 

then all the points of this curve are either parabolic points or 
umbilical points.

5. Suppose 0  is a surface and P  is a point on 0 ; let a be the 
tangent plane at the point P. Prove the following assertions:

a) if the point P  is elliptical, then all points on the surface 0  
sufficiently close to P lie on one side of the plane a;

b) if the point P  is hyperbolic, then points can be found on the 
surface arbitrarily close to P which lie on either side of the plane a ;

c) if the point P is parabolic or umbilical, then either case may 
arise (give examples).

6. Prove that under a projective, in particular an affine, transfor­
mation, the property of a point being elliptic, hyperbolic, or an 
umbilical point, remains unchanged.

7. Prove that if all the points on a curve y on a surface are 
umbilical points then the curve is a plane curve.

8. We shall say that a curve is spherical if all its points belong 
to some sphere.

Suppose r = r(t) is some curve and P(to) is an arbitrary point on 
it. A necessary and sufficient condition that this curve be spherical 
is that the curve defined by the equation

r(t) -  r(l0)
\r{t) -  r{t0) \2 

be plane. Prove this assertion.
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9. Suppose y is an arbitrary curve on the surface 0  passing 
through the point P. Show that the tangent to the curve at P  lies in 
the tangent plane to the surface at this point.

10. Suppose I I  is the osculating paraboloid to the surface 0  at 
the point P. Prove that an arbitrary curve on the surface passing 
through P  has contact of order two with the paraboloid 77 at this 
point.

11. Prove that for an arbitrary analytic transformation of space

x' = <pi(x.y.z), y’ = <pz(x,y,z), z' =  <p3{x, y, z),

where cpi, q>2, 993 arc analytic functions with nonzero Jacobian, the 
property of a curve and surface to have contact of a given order, 
remains unchanged.

12. Prove that if the boundary of a surface lies in a plane, then 
either this surface is a region in this plane, or the surface contains 
elliptic points.

Prove that a closed surface contains elliptic points.
13. Prove that if a straight line has second order contact with a 

surface then this line lies entirely on the surface.
14. Prove that the family of surfaces defined by the equations

<p{x, y, z) =  a,

where 99 js a regular function in the variables x, y, z, does not have 
an envelope.

15. If all the normals to a surface intersect some straight line, 
then the surface is a surface of revolution. Prove this assertion.

16. Prove that if the normals to a surface pass through a common 
point, then this surface is either a sphere or a region on a sphere.
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F I RS T  QUADRATIC FORM OF A SURFACE 
AND CONCEPTS RELATED TO IT

Suppose 0  is a regular surface, r = r(u, v) is any regular para- 
metrization of 0 , and n is the unit normal vector to the surface at 
the point (m, v ) .

In the theory of surfaces, an important role is played by three 
quadratic forms which are related to the surface:

dr2, —dr-dn, dn2.
The first quadratic form /  =  dr2 is positive definite inasmuch as 

it assumes only nonnegative values and vanishes only when 
du = dv =  0. In fact, if dr2 =  0, then dr =  rudu +  =  0. And
since ru X rv ^  0, this is possible only when du — dv =  0.

We shall use the notation ru2 =  E, ru-rv = F, rv 2 =  G for the 
coefficients of the first quadratic form of the surface. Thus,
/  == dr2 =  (rudu +  rvdv) 2 = ru2du +  2 ru-rvdudv +  rv2dv2 =

=  E du2 -f- 2F dudv -j- G dv2.
In the present chapter we shall consider a number of concepts for 

surfaces which are related to the first quadratic form.

§ 1. Length of a curve on a surface. Suppose 0  is a simple 
surface and y is a curve. We shall say that the curve y lies on the 
surface 0  if every point of the curve y belongs to the surface.

Let Po be a point which the curve and the surface have in common, 
suppose r = r(u, v) is any parametrization of the surface in a 
neighborhood of the point Po. and let r =  r(t) be any parametriza­
tion of the curve in a neighborhood of this point. Suppose uo, vo and 
to are the values of the parameters corresponding to the point Po-

For sufficiently small <5 each point P{t) of the curve, 11 — <0| <  <5, 
belongs to a parametrized neighborhood of the point Po on the 
surface. Consequently, each point P{t) is uniquely assigned the 
values u{t) and v{t) in such a way that r{t) = r(u(t), v(t)). We shall 
call the equations u = u(t), v = v(t) the equations of the curve on 
the surface.
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Suppose 0  is a regular surface and y is a regular curve on 0. 
Let r = r(u, v) and r = r(t) be their regular parametrizations in a 
neighborhood of the point P which satisfy the usual conditions 
ru X rv #  0, r'2(t) ^  0. Then, in the equations of the curve on the 
surface

u =  u(t), v = v(t)
the functions u(t) and v(t) are regular functions such that 
u'2(t) +  v'2(t) ^  0.

To prove this assertion it is sufficient to apply the implicit 
function theorem to the system of equations

x(t) =  x{u, v), y(t) = y(u, v), z{t) =  z(u, v),

which the functions u(t), v(t) satisfy as is known from the above 
discussion.

Now suppose 0  is a general surface and let y be a general curve. 
According to the definition, the surface 0  is the image of some 
simple surface 0  under a one-to-one continuous mapping <p into space. 
We shall say that the curve y lies on the surface 0  if there exists a 
curve y on the surface 0  the image of which is the curve y under the 
mapping <p.

It follows from this that if r =  r(u, v) is a parametrization of the 
surface in a neighborhood of the point <p(P) and r = r(t) is a para­
metrization of the curve in a neighborhood of this point, then 
functions u =  u(t), v =  v(t) can be found satisfying the equality 
r(t) =  r(u(t), v(t)). Thus, a curve on a surface can always be given in 
the neighborhood of each point by means of the equations u=u(t), 
v =  v(t), where, if the surface and curve arc regular, then u(t) and 
v(t) are regular functions.

We now consider the length of a curve on a surface. Suppose 0  is a 
regular surface and r — r(u, v) is its regular parametrization. Let y 
be a regular curve on the surface which is given by the equations 
u = u(t), v =  v(t). We shall find an expression for the arc length of a 
segment of the curve with endpoints at the points Po(̂ o) and P(t). 
We have

i t
s(t0, t) = f\r'(t)\dt =  f  \r'(u((), v(t))\dt =

= /  \dr{u,v)\ = J  v7,
y(Po,r) ylPo.P)



102 Chapter VI, § 2

We see that in order to measure the lengths of curves on a surface 
it is sufficient to know the first quadratic form of the surface. In this 
connection, we say that the first quadratic form defines a metric 
on the surface and it is frequently called a linear surface element.

The first quadratic form does not define the surface uniquely. It 
is easy to introduce examples of various surfaces which have the 
same quadratic forms for corresponding parametrizations. But, 
generally speaking, for two surfaces taken arbitrarily, there does not 
exist a parametrization for which the first quadratic forms of the 
surfaces coincide. We shall come back to this question later.

§ 2. Angle between curves on a surface. We shall now 
introduce the notion of direction on a surface. The direction (du : dv) 
on a surface 0  given by the equation r = r(u, v) is the direction of 
the vector dr = rudu +  rvdv. We shall sometimes call this direction 
simply (d).

The angle between the directions (dw.dv) and (dw.dv) is the angle 
between the vectors

dr =  rudu +  r^dv and dr = rudu +  r^dv.

We shall find an expression for the angle between the directions 
(d) and (d). We have

dr-dr = \dr\ |<5r| cos ft, 
dr2 =  Edu2 +  2Fdudv -|- Gdv2 = 1(d), 
dr2 =  Edu2 +  2Fdudv +  Gdv2 =  1(d), 

dr-dr = Edudu +  F(dudv +  dvdu) +  Gdudv = I(d, d).

It follows from this that the expression for cos ft is 
cos ft =■ I(d, d)lVJ(djT(d).

We shall say that the curve y on the surface defined by the 
equation r =  r(u, v) has the direction (dw.dv) at the point (u,y) if 
the vector dr =  rudu +  *vdv is the tangent vector to the curve at 
this point.

A curve on the surface defined by the equations u =  u(t), 
v = v(t) has the direction (u'(t) :v'(t)) at the point (u(t), v(t)).

If two curves y and y on the surface 0  have a common point (u, v) 
then the angle between them at the point (u, v) is the angle between 
their directions at this point. Thus, the angle between curves on a
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surface is the angle between tangents to the curves and, conse­
quently, it depends on neither the parametrization of the surface 
nor on the parametrization of the curve.

E x a m p l e .  The coordinate curves on a surface (i.e. the curves 
u =  constant and v =  constant) have the directions {0 :dv), {du :0). 
Therefore we have the expression

cos & = Fdvdu/VGdv2 V E 6uz = F/VEG
for the cosine of the angle between the coordinate curves. It follows 
from this that the coordinate net on a surface is orthogonal (i.e. the 
coordinate curves intersect at right angles) if and only if F =  0.

Suppose that in a neighborhood of the point («o. ô) on a regular 
surface there is given a family of curves on the surface by means of 
the equations cp{u, v) =  constant, where <pu 2 +  q>v2 ^  0 at the point 
(«o, vo). We construct a second family of curves which is orthogonal 
to the first. To this end, assuming that the second family exists, 
we construct the differential equation for the curves of the second 
family.

At the point («, v) the direction of the curves of the first family 
will be (<pv : — <pu). If we denote the direction of the curves of the 
second family at this point by {du: dv) then the orthogonality con­
dition for these directions will be

E<pvdu +  F{<fvdv — <pudu) — G<fudv — 0
or
(*) (E<pv — Fcpu)du +  (Fcpv — Gcpu)dv =  0.
This is also the differential equation of the curves of the second 
family.

We note that at least one of the coefficients of this equation, that 
is, either (E<pv — Fq>u) or (F(pv — G<pu) is different from zero, so that 

(Eq?v — Fq>u)<pv — {F(pv — G<pu)<pu =  E<pv 2 — 2F(pvq>u +  G(pu2^  0. 
As is known from the theory of differential equations, there 

exists a function fi(u, v) which is different from zero at the point 
(«o. v0) (that is, the integrating factor) such that if we multiply 
equation (*) by /i{u, v) the left member becomes the differential of 
some function y>(u, v):

ju{{E<pv — F<pu)dti +  {F(pv — G(pu)dv) = dip.
The family of curves on the surface is defined by the equation f(u, v) =  
constant, and is the family orthogonal to the given family. In fact, a
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curve of the lirst iamily has the direction {cpv : — cpu) at the point 
(u, v), a curve of the second family has the direction (yv : — ipu). 
But

Vu =  n(Eq>v — F<pu), Wv = p(F<pv — G<pu).
It follows that

jii{{E<pv — F<pu)y>v ~  (F<pv — G<pu)y>u} =  0.
But this is the condition that the directions

(<Pv ■ — <Pu), {Wv '■ —  Wu)
be orthogonal.

In a neighborhood of the point (wo, wo) the surface can be para­
metrized in such a way that the curves 9? =  constant and ip = 
constant are the coordinate curves. In fact, that this be so it is 
sufficient that the condition

<Pu
y>u

<Pv
fv

^ 0

be satisfied (see §3, Chapter IV). But this condition is satisfied 
inasmuch as

— <PuVv + <PvV>u = F<pv2 — 2F<pv<pu +  G(pu 2 ^  0.
Thus, there exists a regular orthogonal parametrization in a 

neighborhood of every point on the surface which is such that one 
family of coordinate curves on the surface can be chosen arbitrarily.

§ 3. Surface area. Suppose I7 is a smooth surface and that G is 
a region on F  which is bounded by a finite number of piecewise

smooth curves (see Fig. 17). 
We decompose the region G 
into small regions by means 
of piecewise smooth curves. 
Suppose g is one of these 
regions. We choose an arbi­
trary point P  in the region g 
and project this region onto 
the tangent plane at the point 
P. If the region g is sufficient­

ly small, then this projection is one-to-one and we obtain a region g 
in the tangent plane which is also bounded by piecewise smooth 
curves. We denote the area of the region g by a(g).
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We shall understand the area of the region G on the surface F 
to be the

lira 2  o{§),

where the summation extends over all regions g in the decom­
position of G, and the passage to the limit is effected under the 
condition that the regions g in the decomposition of G decrease 
indefinitely with respect to their dimensions.

The above definition of surface area corresponds completely with 
the graphic representation of the measurement of area, which is 
usually connected with the decomposition of a surface and the 
“rectification” of individual pieces. We shall show that the surface 
area in the sense of the definition given above in reality possesses the 
characteristic property of additivity, and we shall also find the 
formula for the computation of area in the case of an arbitrary 
parametrization of the surface.

We shall assume, for simplicity of derivation, that a unique smooth 
parametrization r =  r[u, v) can be introduced on the surface. The 
region G on the surface is assigned some region 0  in the u, i;-plane, 
which is bounded by piecewise smooth curves and to the decom­
position of the region & into regions g by means of piecewise smooth 
curves there corresponds a decomposition of the region G into 
regions g by means of piecewise smooth curves.

We shall now define the area <r(g) of the region g. To this end, we 
introduce rectangular cartesian coordinates x, y, z and take the 
point P on the surface for the origin of coordinates; the tangent 
plane to the surface at P  is taken as the x, y-plane, and the normal 
to the surface at P is the z-axis.

A piece g of the surface F  is given in cartesian coordinates by 
means of the equations

x = x(u, v), y = y(u, v), s =  z(n, v), («, v) C g.

The equations

x =  x(u, v), y =  y(u, v), (w, v) C g

define a one-to-one mapping of the region g onto g. The numbers 
w, v can be considered to be the curvilinear coordinates in the 
region g.

The area of a region, in curvilinear coordinates, is computed, as is
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known, by the formula

» « = / /
e

The vector ru X  rv is directed along the normal to the surface and 
since the normal at the point P  coincides with the z-axis, the 
absolute value of the vector ru X  rv at this point is equal to the 
absolute value of its component on the z-axis, i.e.

Xu
y u yv

dudv.

\ru X rv| Xu xv
y u  y v

I xuyv — yuXiij-

It follows by continuity that for arbitrary u, v in g

= \ru X rv| +  eg(u, v),

where eg is arbitrarily small provided the dimensions of the region g 
are small.

For the sum of the areas a(g) we have

xu xv 
yu yv

1. °{£) =  2  II  (ku X rv| +  eg{u, v))dudv =
$

= I f  \ru X  rv\dudv +  2 ) / /  ea dudv.
° g

If the decomposition of the region G into regions g is sufficiently 
fine the quantities eg are less than an arbitrary small e >  0 in 
virtue of the uniform continuity of ru x rv in 0. Therefore

| ' Z f f s g d u d v  | <  e 2  ff(|) =  eo(&),
_ e

where a(0 ) is the area of the region G.
It follows from this that

2  o(g) ~> fj |ru x rv\dudv
b

when the region g in the decomposition of the region G decreases 
indefinitely. This also proves the existence of the area and gives us 
an expression for i t :

a(Q = f I \ ru X  rv| dudv.

The additivity of surface area follows from the additivity of the 
integral. In fact, suppose the region G is decomposed by means of



Chapter VI, § 4 107

piecewise smooth curves into two regions Gi and G2, and let Gi 
and O2 be the corresponding regions in the u, u-plane. We have

J f \ r u X rv\dudv = f / \ r u x rv\dudv +  / } \ru x rv\ dudv. 
a <?i o2

This means that
a(G) =  ff(Gi) +  0 (6 2 ),

which expresses the fact that the surface area is additive.
Now, when the additivity of surface area has been proved, in an 

actual computation of surface area we can decompose a surface into 
parts and in each of these parts we can make use of its respective 
parametrization.

In conclusion, we shall show that surface area is defined by only 
its first quadratic form. In fact,

|ru x rv|2 =  ru2rv 2 — {ru-rv) 2 = EG — F2.

It follows that
a =  / /  V EG — F2 dudv.

In particular, if the surface is defined by the equation z = z(x, y), 
we have

a = f  f  V 1 f 2 q2 dxdy.

§ 4. Conformal mapping. Suppose 0 i  and $2 are regular 
surfaces. A one-to-one and continuous mapping of the surface 0 i  
onto the surface 0 2  is said to be conformal if it leaves the angles 
between curves invariant in the sense that corresponding curves on 
these surfaces intersect at the same angles.

Suppose 0 i  and 0 2  are regular surfaces and P i and P 2 are points 
on these surfaces. Let r = r\(u, v) and r = r2 {u , v) be regular para- 
metrizations of the surfaces 0 i and 0 2  in neighborhoods of the 
points P i and P 2 respectively; the points P i and P 2 of these 
surfaces correspond to the values uq, vq of the parameters u, v. 
Suppose the coefficients of the first quadratic form of the surface, 
corresponding to the indicated parametrization, are proportional, 
i.e.

E 1IE2 =  P 1/P 2 =  Gi,/G2.

Then a mapping of a neighborhood of the point P i on the surface 
0 i onto a neighborhood of the point P 2 on the surface 0 2  in which
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points with the same coordinates u, v are set into correspondence, 
is conformal. To prove this assertion it is sufficient to note that if 
y i is a curve on the surface &i, defined by the equations u = u(t), 
v =  v(t), then the curve yz on the surface 0 2  which corresponds to 
y i is defined by the same equations u=u(t), v=v(t), and then use the 
formula for the angle between two curves.

Theorem. Suppose 0 \ and 0 % are regular surfaces and that Pi, P2 

are arbitrary points on these surfaces.
Then there exists a conformal mapping of some neighborhood of the 

point P\ on the surface 0 \ onto some neighborhood of the point P2 on 
the the surface 0 2 -

The proof of this theorem is based on the possibility of para­
metrizing a regular surface in a neighborhood of an arbitrary point 
in such a way that its first quadratic form assumes the form

/  =  X{u, v){du 2 +  dv2)

with this parametrization.
We shall not carry out the proof of this assertion; we shall only 

point out that the surfaces 0 i and 0 2  are parametrized in neighbor­
hoods of the points Pi and P 2 respectively in such a way that a 
conformal mapping of a neighborhood of the point P 1 on the surface 
0 \ onto a neighborhood of the point P 2 on the surface 0 2  is obtained 
by identifying points with the same coordinates.

In conclusion, we introduce an example of the conformal mapping 
of a sphere onto the plane.

Suppose w is a sphere with radius R and center at the point 
(0, 0, R ). We consider a mapping of this sphere onto the x, y-plane 
which consists in the projection of the sphere from the point S onto 
the x, y-plane. Such a projection of the sphere onto a plane is called 
a stereographic projection (see Fig. 18).

We shall establish the connection between the coordinates x, y, z 
of a point on the sphere and the coordinates of its image (x, y) in the 
plane. We have

xjx - y/y =  (z — 2R)I(— 2R),
X2 +  y2 +  _  R) 2 = R 2

or
£2 +  92 +  (£ — 2R)z =  0.
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In virtue of the first equation, the last equation can be written as 

xx -f yy — 2Rz =  0.

Solving this equation together with the first one, we obtain 

x = 4 R 2x/(x2 +  y2 +  4 R2), y =  4 R 2yj{x2 +  y2 +  4P2), 
z =  2 R(x2 y2)/(*2 +  y2 +  4I?2).

The first quadratic form of the plane is

dx2 T dy2

and the first quadratic form of the sphere to is

dx2 +  dy2 +  dz2 =  16 R4(dx2 +  dy2)j{x2 +  y2 +  4 R 2)2.

From this it is clear that a stereographic projection of the sphere 
onto a plane is a conformal mapping.

§ 5. Isometric surfaces. Bending of surfaces. The surfaces 
0 i and 02 are said to be isometric if there exists a one-to-one 
mapping of the surface 0 \ onto the surface 02 under which cor­
responding curves on these surfaces have the same length.

Suppose 0 i  and 02 are regular surfaces and that P i and P 2 are 
points on these surfaces; let r = r\(u,v), r = v) be regular 
parametrizations of the surfaces in neighborhoods of the points P i
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and Pz respectively. Suppose the first quadratic forms of the surfaces, 
corresponding to these parametrizations, are identical. Then a 
mapping of a neighborhood of the point P i on the surface &i onto 
a neighborhood of the point Pz on the surface 0 z in which points 
with the same coordinates u, v are set into correspondence, is 
isometric.

In order to prove this assertion, it suffices to note that if the 
curve y\ on the surface 0 i is defined by the equations u =  u(t), 
v = v(t), then the curve on the surface 0 z which corresponds to it is 
defined by the same equations u = u(t), v = v{t), and then use the 
formula for arc length of a curve.

Identical surfaces are, obviously, isometric. The converse is not 
true in general. It is not difficult to point out examples of isometric 
surfaces which are not identical. We shall give an example.

The rectangular region 0 <  x <  nj2, 0 <  y <  1 in the x, y-plane 
is isometric to the region on the cylinder x2 y2 — 1, defined by 
the conditions 0 <  z <  1, x >  0, y >  0. It suffices to note that the 
region on the cylinder indicated permits the parametrization 
x =  cos u, y = sin u, z = v, 0 <  u <  n/2, 0 <  v <  1. A linear 
element on the cylinder, corresponding to such a parametrization, 
is du2 -f dv2. From this it is clear that the mapping defined by the 
equations x u, y = v, is isometric.

Suppose 0 i  and 0-z are regular isometric surfaces. Suppose P i is 
any point on the surface <Z>i and let r — r\{u, v) be an arbitrary 
regular parametrization of the surface in a neighborhood of this 
point.

Then there exists a regular parametrization r = rz(u, v) in a 
neighborhood of the point Pz on the surface 0 z such that the points 
of the surface 0 \ under this isometry have the same coordinates u, v 
and the first quadratic forms of the surfaces corresponding to these 
parametrizations are identical.

In fact, a neighborhood of the point P i on the surface 0 \  is the 
image of some region G in the u, w-plane under a one-to-one bi- 
continuous mapping, which assigns the point Pi(«, v) on the surface 
to the point (u, v) in the plane. Suppose Pz(u, v) is a point on the 
surface 0z corresponding, under this isometry, to the point Pi(u, v), 
and that rz(u, v) is the position vector of Pz- The equation r=rz(u,v) 
defines a parametrization of the surface 0 z in a neighborhood of the 
point Pz- The regularity of this parametrization cannot as yet be
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established; this will be done in Chapter IX. We shall assume that 
the parametrization r =  rz(u, v )  of the surface 0z is regular. We 
shall show that the first quadratic form of the surface 0 z with such 
a parametrization coincides with the first quadratic form of the 
surface 0 \.

Suppose y 1 is any curve on the surface 0 \  and that u = u(t), 
v =  v{t) are its equations. The curve on the surface 0 z which corre­
sponds to it under the isometry is defined by the same equations. 
Therefore

t ___________________  t _______________________
/  V E iu ' 2 +  2F\u'v' +  G\v' 2 dt =  f  VEzu ' 2 +  2Fzu'v' +  G%v' 2 dt.
to to

Since this equality holds for any t, the integrands are equal. Inas­
much as the curve yi is completely arbitrary, the functions under 
the integral signs are equal for arbitrary values u' and v', and this 
is possible only when E 1 = Ez, F\ =  Fz, G\ =  G2. This completes 
the proof of the assertion.

The two preceding assertions can be combined into the following 
theorem.

Theorem. A necessary and sufficient condition that a neighborhood 
of the foint P 1 on the regular surface 0 \ be mapped isometrically onto a 
neighborhood of the point Pz on the regular surface 0 z is that there 
exist regular parametrizations of neighborhoods of these points such 
that the first quadratic forms of the surfaces corresponding to these 
parametrizations be identical.

Since angles between curves on the surface and surface area are 
defined by the first quadratic form of the surface, and isometric 
surfaces have identical first quadratic forms for corresponding 
parametrizations, angles between curves and areas remain un­
changed under an isometric mapping, i.e. corresponding regions on 
isometric surfaces have identical areas.

We have shown by means of an example that different surfaces 
may have identical first quadratic forms for corresponding para­
metrizations. The question arises, to what degree is the surface 
defined by the first quadratic form and does there exist a surface 
having an arbitrarily given quadratic form as its first quadratic 
form?

It turns out that a surface is far from being defined "in the small’’ 
by its first quadratic form. It is known, for example, that the
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following theorem holds. For any sufficiently small neighborhood a> 
of the point P on an analytic surface there exist surfaces which are 
isometric to a> and not identical with it.

Some surfaces are defined uniquely “in the large” by the first 
quadratic form. Thus, for example, an arbitrary regular closed 
convex surface 0  is uniquely defined by the first quadratic form in 
the sense that any regular surface 0 ' which is isometric to 0  is 
congruent to 0. We can itemize a rather extensive class of infinite 
surfaces which are uniquely defined by the first quadratic form. 
Any elliptic paraboloid is an example of a surface in this class.

A bending of a surface is a continuous deformation of it under 
which lengths of curves on the surface remain invariant. The 
bending of a surface can be illustrated graphically by bending a 
sheet of paper.

Since lengths of curves remain invariant under bending of a 
surface and consequently at any given moment of bending the 
surface is isometric to the initial surface, the first quadratic form, 
for corresponding parametrization, remains invariant under 
bending.

It turns out that the surface is always bendable “in the small.” 
Thus, for example, the following theorem holds: at every point of 
an analytic surface which is not an umbilical point there exists a 
neighborhood permitting a continuous bending. Theorems on bend­
ing “in the large” under weaker assumptions concerning regularity 
are also known.

There exist surfaces “in the large” which do not permit 
continuous bending. For example, all closed convex surfaces 
are of this sort.

E xercises fo r  Chapter VI

1. Find the first quadratic form for the surface of revolution

x =  <p(u) cos v, y = (p[u) sin v, z = f(u).

Answer: I  = (<p' 2 -|- y)'2)du2 -f- q>2dv2.
2. Show that a surface of revolution can be parametrized in such 

a way that its first quadratic form will have the form

I  =  du2 -f- G(u)dv2.
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3. Find the arc length of a curve defined by the equation u = v 
on a surface with

I  =  du2 +  sinh2 udv2 

as its first quadratic form.
Answ er: s =  |sinh u i  — sinh u \ \ .
4. Find the angle at which the coordinate curves x = xq, y =  yo 

intersect on the surface z = axy.
A n sw e r: cos & =  a2xoyol^/ 1 +  a2xo2 V 1 +  a 2yo2-
5. Show that, the coordinate net u, v on the helicoid

x = au cos v, y =  au sin v, z =  bv
is orthogonal.

6. Find the family of curves which intersect the rectilinear 
generators x =  constant of the hyperboloid z = axy orthogonally.

Answer: (1 +  a2x2)y =  constant.
7. Find curves on a sphere which intersect the meridians of the 

sphere at a constant angle (such curves are called loxodromes).
8. Find the area of the quadrilateral on the helicoid (Exercise 5) 

bounded by the curves
u =  0, u = bja, v =  0, v =  1.

Answ er: a  =-^- ( V 2  +  ln(l +  V 2 .) ) -

9. Show that the areas of regions on the paraboloids

2 = - (*2 + y2).
z =  axy

which project onto the same region in the x, y-plane, are equal.
10. Show that if a surface permits a parametrization for which the 

coefficients of the first quadratic form do not depend on u and v, 
then this surface is locally isometric to a plane.

Problem s and Theorems fo r  Chapter VI

1. Prove that if U(x, y) and V(x, y) arc the real and imaginary 
parts of a function of the complex variable x +  iy, then the areas of 
regions on the surfaces

z =  U(x,y), z =  V(xy) 
which project onto the same region in the x, y-plane, are equal.
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2. Prove tnat tnere exists a conformal mapping of a surface of 
revolution (Exercise 1) onto a plane for which the meridians of the 
surface (i.c. the curves v =  constant) go over into straight lines 
which pass through the origin of the coordinate system, and parallels 
(i.e. the curves u =  constant) go over into circles with center at the 
origin of coordinates.

Consider the particular case when

<p(u) =  cos u, y>(u) =  sin u (sphere).

3. Prove there exists a conformal mapping of a surface of 
revolution onto a plane for which the meridians and parallels of the 
surface go over into the straight lines x =  constant, y =  constant. 
Consider the particular case when the surface is a sphere.

4. Prove that it is impossible to map a sphere locally onto a 
plane.

5. If U(x,y) +  iV(x, y) is an analytic function of the complex 
variable x +  iy, for which

U
U

X

y
y  x
V v

# 0

at the point (xq, yo), then a mapping of a plane onto itself which 
assigns to the point with cartesian coordinates x, y the point with 
cartesian coordinates JJ{x,y), V(x,y), is conformal. Prove this 
assertion.

6. Suppose
ds2 = Edu2 -f 2Fdudv +  Gdv2

is a line element, of an analytic surface. We consider the differential 
equation

Edu2 -f 2Fdudv +  Gdv2 =  0

in a complex region. Suppose <p(u, v) =  constant is a solution of 
this equation and that U(x, y) and V(x, y) are the real and imagi­
nary parts of the function <j>(x,y). Then if

U
U

u
V

V u
V v * 0

a mapping of the surface onto a plane, under which there is assigned 
to the point (u, v) on the surface the point in the plane with 
cartesian coordinates U and V, is conformal. (The proof of the
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theorem in § 4, Chapter VI, for the case of analytic surfaces can be 
based on this assertion.)

7. A mapping of one surface onto another is said to be equiareal if 
regions which correspond under this mapping have the same areas.

Prove that if a mapping of one surface onto another is conformal 
and equiareal, then it is isometric.

8. Prove that an arbitrary isometric mapping of a plane onto 
itself is either a translation or a translation together with a reflec­
tion.

9. Suppose 0 i and 0% are isometric surfaces and that r=ri(u, v), 
r =  r2(w, v) are their parametrizations. An isometric mapping 
consists in corresponding points with the same coordinates.

Suppose 0 \ tfi is a surface defined by the equation r = lr\[u, v) +  
firz(u, v). Prove that the surfaces 0xlfl and 0   ̂ are isometric.

10. Show that there exists an isometric mapping of the helicoid
x = u cos v, y = u sin v, z =  mv 

onto the catenoid
x = a. cos /3, y = a. sin /9, z = m cosh(a/m),

under which the meridians on the catenoid correspond to the 
rectilinear generators of the helicoid.

11. Prove that an arbitrary helicoid surface permits an isometric 
mapping onto a surface of revolution, under which parallels corre­
spond to helicoid lines (Bura’s theorem).

12i- A net of curves on a surface is called a Chebyshev net if 
opposite sides of any quadrilateral formed by curves of the net are 
equal.

A necessary and sufficient condition that the coordinate net on 
the surface be a Chebyshev net is that Ev = Gu =  0. Prove this 
theorem.

12*2. Prove that if the coordinate net is Chebyshevian then the 
coordinates u, v can be chosen so that the linear element on the 
surface assumes the form

ds2 =  du2 +  2 cos co dudv +  dvz,
where co is the angle formed by coordinate curves.

123. Prove that on the translation surface 
r = U{u) +  V(v) 

the coordinates curves form a Chebyshev net.
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SECOND QUADRATIC FORM OF A SURFACE 
AND QUESTIONS ABOUT SURFACE 

TH EO RY  RELA TED  TO IT

Suppose 0  is a regular surface and r = r{u, v) is any regular 
parametrization of 0, and n(u, v) is the unit normal vector to the 
surface at the point P{u, v). The second quadratic form of the sur­
face 0  is the quadratic form
— dr-dn = (— ru-nu)du2 +  (— ru-nv — rv-nu)dudv +  (— rv-nv)dv2. 
We shall use the following notation for the coefficients of this form: 

— Yu'Ylu — L, — Yu’flv — Ty'Ylu —- 2A/”, — Y^'fly “  A.
Since dr-n =  0 and, consequently,

d(dr-n) =  d2r-n +  dr-dn =  0,
we have

II  =  d2r-n =  (ruu-ri)du2 +  2 (ruv-n)dudv +  (rvv-n)dv2.
It follows that

L - r uu-n, M  = ruv-n, N  = rvv-n.
Since n = (ru x rv)l\ru x rv\, and \ru X rv\ = VEG  — F2, we 
have

X U U yuu ZUu
x u y u

[YuvXuYv] %v yv z v

| Yu X Yv| V e g  - F 2
Xuv yuv z uv
Xu yu %u

(YuvYuYv) Xy yv 2 V

\yU X f  y\ V e g  - F 2
%vv Vvv z vv
%u yu 2u

(yvvyuyv) Xy yv Zy
| Yu X Yv | V e g  - F2
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In particular, if the surface is defined by the equation z =  z(x, y) 
then

L = — = ^
V  I +  Zx2 +  Zy2

M  : i xy N = ‘■yy
V l + Z x2 +  Zy2 y / l ' + Z x2 +  Zy2

Since the equation of the osculating paraboloid to the surface for a 
suitable choice of coordinates is

z = \{Lx2 +  2Mxy -f Ny2),

the classification of points on the surface as elliptic, hyperbolic, and 
umbilical points is related to the definition of the second quadratic 
form of the surface.

§ 1. Curvature of a curve lying on a surface. Suppose 0  is a 
regular surface, that r =  r(u, v) is any regular parametrization of 
0, and that y is a regular curve on the surface which passes through 
the point P(u, v) and having the direction (du'.dv) at this point. 
Suppose r =  r(s) is the natural parametrization of the curve y.

Consider the scalar product 
r”-n. The vector r" is directed 
along the principal normal to the 
curve and its magnitude equals 
the curvature of the curve. From 
this it follows that

r"-n  =  k cos ■&,

where k is the curvature of the 
curve and & is the angle formed 
by the principal normal to the 
curve and the normal to the 
surface (Fig. 19). But

y "  ■ n =  (rUuU'2 +  2 ruvit'v' +  ?W>'2 +  ruu" +  rvv")-n =

=  {rUu‘ n)u'2 + 2(ruv-n)u'v' +  (rvv-n)v'2.
Therefore

Ldu2 T  2Mdudv +  Ndv2 I I=  __ .k cos ■& =
Edu2 +  2 Fdudv +  Gdv2 

The right member of this equality depends only on the direction
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of the curve at the point P[u, v). Thus,
k cos ft — ko =  constant

at the point P(u, v) for all curves y which pass through this point 
and have the same direction at P  (i.e. the same tangent).

The equation
k cos ft — ko =  constant

forms the content of Meusnier’s theorem.
The quantity ko is called the normal curvature of the surface in the 

given direction (du:dv). To within sign, it is equal to the curvature 
of the curve, which is obtained by intersecting the surface with a 
plane perpendicular to the tangent plane and having the direction 
(du: dv).

R e m a r k .  The set of points common to a surface and the inter­
secting plane in a neighborhood of the point P  does indeed represent 
a curve. To prove this assertion, it suffices to apply the theorem in 
§ 5, Chapter I.

The normal curvature of the surface 0  at the point P{u, v) in the 
direction (dw.dv) equals the normal curvature of the osculating 
paraboloid to the surface 0  at the point P  in the same direction. 
In fact, the osculating paraboloid to the surface at the point P 
permits the following parametrization

n
r = (u — tl0)ru + (v — v0 )rv +  — (L[u — u0)2 +

+  2 M(u — uq)(v — vq) +  N(v — vo)2)-

From this it is clear that the first and second quadratic forms of the 
surface and of the osculating paraboloid at the point P  coincide, and 
consequently, the normal curvatures coincide.

We lay off from an arbitrary point P{u, v) of the surface in every 
direction [dw.dv) a segment equal to |1/A|* where k is the normal 
curvature of the surface in this direction. The geometric locus of the 
endpoints of these segments is called the indicatrix of curvature of 
the surface at the point P  (Fig. 20).

We shall now explain what the indicatrix of curvature is. To this 
end, we introduce cartesian coordinates into the tangent plane to 
the surface, taking the point of tangency as the origin of coordinates, 
the straight lines containing the vectors ru and rv as the coordinate 
axes, and the vectors ru and rv themselves as the basis vectors.
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Suppose x and y are the coordinates of the point of the indicatrix 
of curvature, corresponding to the direction (du'.dv). We have

xru +  yrv
1
I

rudu -j- rvdv 
| rudu +  rvdv |

Squaring both members of this equation and noting that x : y--= 
du : dv, we obtain

Ex2 +  2Fxy -)- Gy2 =
Edu2 +  2 Fdudv Gdv2

| Ldu2 -\- 2Mdudv Ndv2 \

Ex2 +  2 Fxy +  Gy2 
| Lx2 +  2 Mxy +  Ny2

It follows that
| Lx2 +  2 Mxy +  Ny2\ =  I.

This is the equation of the indicatrix of curvature.

Thus, the indicatrix of curvature is an ellipse at an elliptic point 
of the surface (LN  — M 2 >  0), a pair of conjugate hyperbolas at a 
hyperbolic point (LN — M 2 <  0), and a pair of parallel straight line 
at a parabolic point (LN — M 2 =  0).

§ 2. Asymptotic directions. Asymptotic curves. Conjugate 
directions. Conjugate nets on a surface. A direction (du:dv) on a 
regular surface & at the point P(u, v) is said to be an asymptotic
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direction if the normal curvature of the surface in this direction 
vanishes. Thus, a direction (du : dv) will be asymptotic if and only 
if the condition

Ldu2 -f- 2Mdudv -f- Ndv2 =  0
is satisfied.

From this it follows that asymptotic directions do not exist at an 
elliptic point, two asymptotic directions exist at a hyperbolic 
point, one asymptotic direction exists at a parabolic point, and 
finally, any direction is an asymptotic direction at an umbilical 
point.

A curve on a surface is said to be an asymptotic curve if its di­
rection at each point is asymptotic. From this it follows that

Ldu2 +  2Mdudv -f- Ndv2 = 0
is the differential equation of the asymptotic curves.

If a straight line lies on a surface then, obviously, it is an 
asymptotic curve.

We note one simple property of asymptotic curves. The tangent 
plane to the surface at every point of an asymptotic curve is the 
osculating plane. In fact, if the curvature of the asymptotic curve y 
vanishes at the point P, then the tangent plane to the surface at the 
point P  is already the osculating plane inasmuch as it passes through 
the tangent to the curve. But if the curvature of the curve y at the 
point P is different from zero, then the tangent plane contains the 
vectors dr and d2r (the first because the plane is the tangent plane, 
and the second because the curve y is an asymptotic curve and, 
consequently, it satisfies the condition d2r-n =  0). From this it 
follows that in this case also the tangent plane is the osculating 
plane to the asymptotic curve.

We shall explain under what conditions the coordinate curves on 
the surface, u = constant and v =  constant, will be asymptotic. 
Substituting successively u =  constant and v =  constant into the 
equation of the asymptotic curves, we conclude that the coordinate 
net will be asymptotic if and only if the coefficients L and N  in the 
second quadratic form vanish.

In the investigation of surfaces, it is sometimes convenient to 
parametrize the surface in such a way that the coordinate curves are 
asymptotic. Such a parametrization is always possible in a neighbor­
hood of a hyperbolic point on the surface (see § 3, Chapter IV).
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We now introduce the concept of conjugate directions on a surface.
Suppose P  is any point on a regular surface 0, that (du : dv) and 

(du : dv) are two directions on the surface at the point P, and that 
g' and g" are straight lines passing through the point P  and having 
directions (du : dv) and (du : dv) respectively. Then the directions 
(du : dv) and (du : dv) are said to be conjugate directions if the 
straight lines g' and g" are polar conjugate with respect to the 
osculating paraboloid to the surface at the point P.

It is known from analytic geometry that the condition for polar 
conjugacy for the paraboloid

z =  \(Lx^ +  2 Mxy -f- Ny2)
is

Ldudu +  M(dudv +  dvdu)Ndvdv =  0.

This is also a necessary and sufficient condition that the directions 
(d) and (<5) be conjugate directions.

It is clear from the conjugacy condition for the directions 
(du : dv), (du : dv) that the diameters of the indicatrices of curva­
ture, having the directions (du : dv), (du : dv), are conjugate dia­
meters. This property of conjugate directions could have been taken 
for their definition.

Suppose we have two families of curves ya' and yp" on a surface, 
forming a net in the sense that through every point of the surface 
there passes exactly one curve of each family. Then the net of 
curves, formed by the families ya' and yp", is called a conjugate net 
if the curves from different families have conjugate directions 
at each point.

If the coordinate net is a conjugate net, then the coefficient M  
of the second quadratic form of the surface vanishes. In order to 
verify this, it suffices to write the conjugacy condition for the 
directions (du : 0) and (0 : dv).

In a neighborhood of each point P  which is not an umbilical 
point, the surface can be parametrized in such a way that the co­
ordinate net will be conjugate, where one family of curves of this 
net can be taken arbitrarily just as long as the curves of this family 
do not have asymptotic directions.

§ 3. Principal directions on a surface. Lines of curvature.
The direction (du : dv) on a surface is called the principal direction
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if the normal curvature of the surface in this direction attains an 
extremal value. Thus, this is nothing other than the direction which 
coincides with the directions of the axes of the indicatrix of curva­
ture.

From this it follows that there are two principal directions at 
each point of the surface in the general case. Since they coincide 
with the directions of the axes of the indicatrix of curvature, the 
principal directions are orthogonal and conjugate and, conse­
quently, they satisfy the conditions

I(d, d) =  Edudu +  F(dudv +  dvdu) +  Gdvdv =  0 

(which is the orthogonality condition),

II(d, d) = Ldudu +  M(dudv +  dvdu) +  Ndvdv =  0

(which is the conjugacy condition).
Eliminating du and dv from these equations, we obtain

Edu +  Fdv Fdu -f- Gdv _
Ldu -)- Mdv Mdu +  Ndv

This is also a necessary and sufficient condition that the direction 
(du : dv) be the principal direction. This condition can also be 
written in another, much more symmetric, form:

dv2 — dndv du2
E F G
L M N

The principal directions are not defined in two cases: in the case 
of an umbilical point, since then any direction is a principal di­
rection at this point (the normal curvature vanishes in any direction), 
and in the special case of an elliptic point, when the indicatrix of 
curvature is a circle; such a point is called a spherical point. At a 
spherical point as well as at an umbilical point, any direction is a 
principal direction. This situation also shows up in the condition 
(*), which defines the principal directions. It is satisfied identically 
only in two cases: L = M  =  N  =  0 (umbilical point) and in the 
case the coefficients of the first quadratic form are proportional to 
the coefficients of the second quadratic form (spherical point).

The normal curvatures to a surface, corresponding to the princi­
pal directions, are called the principal curvatures.
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R odrigues’s Theorem. I f  the direction (d) is the principal 
direction then dn = — kdr, where k is the normal curvature of the 
surface in this direction. Conversely, if dn = Xdr in the direction (d), 
then (d) is a principal direction.

Proof. Suppose (d) is another principal direction, perpendicular 
to the first. The vector dn, being perpendicular to n, permits the 
representation

dn = Mr -f- (idr.

Forming the scalar product of this equation with dr and noting that 
dr-dr =  0 in virtue of the conjugacy of the directions {d) and (d) and 
dr-dr = 0 in virtue of the orthogonality of these directions, we 
obtain

fidr2 =  0.

It follows that fi =  0. Hence, dn = Xdr. Forming the scalar product 
of this equation with dr, we get

dr-dn =  Xdr'1.

It follows from this that X = — k. This completes the first half of 
the assertion.

We shall now prove the converse assertion. Suppose the direction 
(d) is such that dn =  Xdr. We shall show that it is a principal 
direction. Suppose (d) is the direction perpendicular to (d). Then, 
forming the scalar product of the equation dn =  Xdr with dr, we get 
dn-dr = 0. But this means that the directions (d) and (d) are conju­
gate. Since, moreover, they are orthogonal, they are principal 
directions.

A curve on a surface is called a line of curvature if its direction 
at every point is the principal direction.

It follows from this that

dv2 — dudv du2
E F G
L M N

is the differential equation of the line of curvature.
If the point P on a surface is not a spherical or umbilical point, 

then the surface can be parametrized in a neighborhood of P  in 
such a way that the coordinate curves, i.e. the curves u =  constant 
and v =  constant will be lines of curvature of the surface. If the
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surface is parametrized in this way, then the middle coefficients of 
the first and second quadratic forms will vanish.

In conclusion, we shall prove one theorem which in some cases 
enables one to find the lines of curvature of a surface quite simply.

T h e o r e m .  I f  two surfaces intersect a long some curve y under a 
constant angle and if this curve is the line of curvature on one of the 
surfaces, then it will also be the line of curvature on the other surface.

P r o o f .  Differentiating along the curve y on the first surface, we 
have

dni = X\dr.

For the second surface, we have

dn% =  A2 dr +  /mi +  vn-z.

We now form the scalar product of this equation with n\ and «2- 
We then obtain

ni'dn<i =  /mi2 +  vn\-n'i, 
n-z-dnz =  /mi m2 +  vnfl.

But W2■ dn% =  Q.ni'dnz = d(n\-n<£) — ni-dn\ =  — ni-dn\ =  — «2 
•Mr — 0. Thus,

(**) /m i2 +  v n \ - n i  =  0, ( M y m  +  W 22 =  0.

If a surface is not tangent along the curve y, then »i2»22- ( « r « 2)2=  
n\ X n2|2 7  ̂ 0 and, consequently, equality (**) is possible only if 
u = v =  0. But then dnz = h%dr for the second surface, which 
means that y is the line of curvature for the second surface.

If a surface is tangent along the curve y, then we consider a 
surface which intersects the first surface under a constant nonzero 
ingle. The construction of such a surface in a sufficiently small 
neighborhood of each point of the curve y does not present any 
difficulty. The curve y will be a line of curvature on this surface. 
But the surface so constructed intersects the second of the given 
surfaces at the same angle. It follows from this that the curve y will 
ie a line of curvature on the second surface.

C o r o l l a r y .  I f a sphere (or a plane) intersects any surface at a 
'.onstant angle, then the intersection curve is a line of curvature.

This follows from the fact that on a sphere (or on a plane) every 
surve is a line of curvature.
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§ 4. Relation between the principal curvatures of a surface 
and the normal curvature in an arbitrary direction. Mean 
and Gaussian curvatures of a surface. We shall express the 
normal curvature of a surface in an arbitrary direction in terms of 
the principal normal curvatures. To this end, we introduce recti­
linear cartesian coordinates x, y, z taking the tangent plane to the 
surface at an arbitrary point 0  as the x, y-plane, and the normal to 
the surface as the z-axis. We shall choose the directions of the x and 
y-axes so that they coincide with the principal directions at the 
point 0.

Suppose z =  z(x, y) is the equation of the surface in a neighbor­
hood of the point 0  with such a choice of coordinates. At the point 
0, zx =  0, zy =  0. Therefore,

I  = dx2 -f- dy2,
I I  = rdx2 +  2 sdxdy +  tdy2

at the point 0. Since the directions (0 : dy) and dx : 0) at the point 
0  are conjugate, being principal directions, we have s =  0 and 
consequently,

I I  =  rdx2 +  tdy2.
It follows that the normal curvature in any direction (dx : dy) is

=  rdx2 +  tdy2 
V 1 dx2 + dy2 '

Taking the directions (0 : dy) and {dx : 0) we see that r and t are 
the principal curvatures.

Suppose ■& is the angle formed by an arbitrary direction {dx : dy) 
with the principal direction {dx : 0), k$ is the normal curvature in 
this direction, ki and ki are the principal curvatures corresponding 
to the directions {dx : 0) and (0 : dy), respectively. Then, from the 
expression for the normal curvature (*), we obtain Euler’s formula 
for the normal curvature in an arbitrary direction,

k$ — ki cos2 & +  k<i sin2 #.

It follows from the Euler formula that in order to obtain the 
normal curvature of a surface in any direction, it suffices to know 
the principal curvatures of the surface. We shall find the expression 
for the principal curvatures in the case of an arbitrary parametric 
representation of a surface.
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Suppose k\ and ki a:e the principal curvatures of the surface and 
suppose for definiteness that k\ ^  ki. In such a case, as we know, ki 
is a maximum and ki is a minimum of the ratio of the quadratic 
forms,

I I  L£2 +  2 M!-r) +  Nr)2 
I  E£2 +  2F£r] -f- Grj2

Suppose £, i) arc the values of the variables £ and r) for which this 
ratio attains its maximum (we already know the existence of such £ 
and r/). Then, for all £ and r\,

I I  -  ki I  ^  0,

where equality holds for £ =  £ and rj = rj. If follows from this that 
for these values

(II -  k j ) ; '  =  0,
(II -  *!/)„' =  0,

i.e.
Z.£ +  Mrj — k \(££ +  Fij) =  0,

Af| -)- Nrj — ki(Fg Grj) =  0.

Eliminating £ and rj from these equations, we obtain the following 
equation for

L -  kxE, M - k i F  _
M  -  kiF, N  — k\G ~

Carrying out the analogous reasoning for ki, we obtain the same 
equation. Thus, the principal curvatures k\ and ki are the roots of 
the quadratic equation

L - k E ,  M  — kF 
M - k F ,  N  ~ k G

i.e.
k2(EG -  F 2) -  k(LG -  2MF + NE) +  LN  -  M 2 =  0.

We shall now define the concepts of mean and Gaussian curva­
tures of a surface. Half the sum of the principal curvatures of a 
surface

H = \(ki +  ki) 

is called the mean curvature of the surface.
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The nomenclature ‘‘mean curvature” is justified by the following 
properties of it.

If liA and k. T, are the normal curvatures of a surface in twov ir+ g
mutually perpendicular directions, then half their sum equals the 
mean curvature of the surface.

The mean value of the normal curvatures of a surface at a given 
point on the surface

2ir

0
equals the mean curvature of the surface. Both these properties are 
obtained without difficulty from Euler’s formula.

The product of the principal curvatures of a surface is called the 
Gaussian curvature, or the total curvature, of the surface,

K  =  AiA2.

We shall find the expression for the mean and Gaussian curvatures 
of a surface in terms of the coefficients of the first and second 
quadratic forms.

Inasmuch as the principal curvatures *i, k2 of the surface satisfy 
the equation

k2[EG -  F 2) -  k(LG -  2M F + NE) +  LN - M 2 = 0,

then in virtue of the properties of the roots of a quadratic equation 
we obtain

H =  +  k2)
, LG -  2M F + NE  
2 EG — F2

K  =  *1*2
LN -  M 2 
EG -  F2 '

In particular, if the surface is defined by the equation z=z(x, y), 
then

=  , (1 +  q~)r -  2pqs +  (1 +  p2)t 
" (1 +  p2 +  ?2)3/a

rt — s2
I T T J 2'+ T 2] 1 ’

K  =
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where p, q, r, s, t is the usual notation for the partial derivatives of 
the function z(x, y).

We note that the sign of the Gaussian curvature is defined by the 
expression LN  — M 2. Therefore, the Gaussian curvature is positive 
at elliptic points, negative at hyperbolic points, and equal to zero at 
parabolic and umbilical points.

A necessary and sufficient condition that the point P on a surface 
be an umbilical point is that the mean and Gaussian curvatures at 
this point be equal to zero.

In fact, the normal curvature in any direction vanishes at an 
umbilical point. In particular, the principal curvatures are equal to 
zero, but then half their sum and their product equals zero, i.e. the 
mean and Gaussian curvatures vanish. Conversely, if the mean and 
Gaussian curvatures vanish, then the principal curvatures vanish 
and, consequently, the normal curvature in any direction equals 
zero. But then the second quadratic form vanishes identically, i.e. 
the point P  is an umbilical point.

Suppose M  is any set of points on a surface. We mark off from an 
arbitrary point 0  unit normal vectors to the surface at points of the 
set M. The ends of these normals form some set M' on a unit sphere. 
This set is called the spherical image of the set M  (Fig. 21).

There exists a remarkable relation among the area of a 
surface, the area of its spherical image and the Gaussian curvature 
of the surface. This relation is expressed by the following theorem.

G a u s s ’s  T h e o r e m .  The ratio of the area of the spherical image of a 
region on a surface to the area of this region tends to the absolute value
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of the Gaussian curvature at a prescribed point 0  of the surface, when 
the region shrinks down to this point.

We shall carry out the proof of this theorem under the assumption 
that the Gaussian curvature does not vanish at the point 0  and that 
the region G, which shrinks to the point 0, is bounded by a finite 
number of piecewise smooth curves. The situation is this that the 
spherical image of the region G cannot be a region if the Gaussian 
curvature vanishes at the point 0. Therefore, in order to consider 
the general case, we must define the concept of area for an arbitrary 
set.

Thus, suppose 0  is either an elliptic or hyperbolic point on the 
surface and that G is a region, lying in a sufficiently small neighbor­
hood of the point 0, bounded by a finite number of piecewise smooth 
curves.

We shall parametrize the surface in a neighborhood of the point 0  
in such a way that the coordinate curves which pass through the 
point O are in the direction of the principal directions at this point.

The equation
f =  n(u, v),

where n(u, v) is a unit normal vector to the surface, represents the 
parametrization of the unit sphere in a neighborhood of the point O', 
corresponding to the point 0  on the surface. In fact, the condition 
nu X nv 0 is satisfied in an obvious manner at the point O' since 
nu =  — kiru, nv =  — k%rv, and by continuity it is also satisfied in 
some neighborhood of this point. The spherical image G' of the region 
G, if the region G lies in a sufficiently small neighborhood of the 
point 0, represents a region bounded by a finite number of piecewise 
smooth curves. Its area is given by

<r(G') =  JJ \nu x nv\dudv. 
a

Since the area of the region G is

o(G) = / /  |ru X rv\dudv, 
a

we have
o(G') |nu X nv\{0)
o(G) "*■ \ ru X rv\ (0) 1 1 2,‘

This completes the proof of the theorem.
Pogorclov, Diff. G eom etry.
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§ 5. Ruled surfaces. A surface & is called an elementary ruled 
surface if a straight line passes through every point P  ot this surface, 
where the line has an interval, containing P, in common with 
the surface but the endpoints of this interval do not belong to 
the surface.

Example. Suppose a(u) and b(u) are two vector functions, 
defined in a neighborhood of the point u =  uq, which satisfy the 
conditions b(uo) #  0, b(uo) X a'(uo) ^  0 at this point. Then the 
vector equation

(*) r = a(u) vb(u), \u — Uo\ <  e, |i>| <  e

defines an elementary ruled surface for sufficiently small e.
In fact, for sufficiently small e, ru x  rv 0, inasmuch as 

ru x rv = a'(uo) X b(uo) ^  0 when u =  uq, v =  0. If follows from 
this that for sufficiently small e equation (*) does indeed define a 
surface. The fact that this surface is an elementary ruled surface 
follows from the situation that a straight line r = a(u') +  tb(u') 
passes through any point («', v') of this surface. The segment 
\t| <  e of this line lies on the surface, and its endpoints do not belong 
to the surface.

A surface 0  is called a general ruled surface if each of its points 
has a neighborhood which is an elementary ruled surface.

Rectilinear segments on a ruled surface are called rectilinear 
generators.

Inasmuch as rectilinear generators pass through every point of a 
ruled surface, there is a direction at every point of a ruled surface 
in which the normal curvature of the surface vanishes. It follows 
from this that a ruled surface cannot have elliptic points. The 
Gaussian curvature of a ruled surface is negative or equal to zero.

Rectilinear generators are asymptotic curves.
We shall find a local parametric representation of an arbitrary 

ruled surface, i.e. a parametric representation in a sufficiently 
small neighborhood of any point P.

We shall distinguish the following cases:
a) The point P  is hyperbolic;
b) All points in a sufficiently small neighborhood of the point P  

are parabolic;
c) All points in a neighborhood of the point P  are umbilical 

points.
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In the first case, at least one family of asymptotic curves in a 
neighborhood of the point P are straight lines. In fact, either all the 
asymptotic curves in a neighborhood of the point P are straight 
lines, or one can find asymptotes y arbitrarily close to P which are 
not straight lines. But then all asymptotes which intersect y are 
straight lines.

If r =  a(u) is the equation of the asymptote y and b(u) is a unit 
vector in a second asymptotic direction, then the surface can be 
defined by means of the equation

r = a(u) +  vb(u)

in a neighborhood of the point P. i ^
We shall now consider the second case. In this case, the rectilinear 

generators are lines of curvature.^Only one rectilinear generator 
passes through each point Q near P. We draw the curve y ,r  =  a(u), 
through the point P  on a surface in such a way that its direction at 
the point P does not coincide with the direction of the generator. 
The unit vector b(u) on the generator is a regular function of u. 
The surface can be defined by the equation

r = a(u) +  vb(u)

in a neighborhood of the point P.
We finally consider the third case. Since all points near P are 

umbilical points, and any direction is a principal direction at an 
umbilical^ point and the normal curvature in any direction equals 
zero, by Rodrigues’s theorem dn =  0 in a neighborhood of the 
point P. Consequently, n — no =  constant. Since n-dr =  0, we 
have no • {r — ro) =  0. Thus, in the third case a sufficiently small 
neighborhood of the point P  is a region on the surface. Suppose a0 
and bo are any independent constant vectors, belonging to this plane. 
Then in a neighborhood of the point P the surface can be defined by 
means of the equation

r =  aou +  bov.

Thus, in all the cases we have considered, a ruled surface permits 
a parametrization of the form

r =  a(u) +  vb(u) 

in a sufficiently small neighborhood of every point.
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We shall now consider an important class of ruled 
so-called developable surfaces.

A surface 0  is called a developable surface if it is locally isometric 
to a plane, i.e. if every point of such a surface has a neighborhood 
whichls isometric to a region in a plane.

It turns out that a necessary and sufficient condition that a 
surface be developable is that its Gaussian curvature vanish every­
where. Thus, developable surfaces may be defined as surfaces with 
zero Gaussian curvature.

A surface which is the envelope of a one parameter family of 
,planes is a developable surface. In order to verify this, it is sufficient 
to calculate the Gaussian curvature of the envelope, starting with its 
parametric representation obtained in § 5, Chapter V.

We shall study the structure of a developable surface in a 
neighborhood of an arbitrary point P. We shall distinguish two 
cases:

a) The mean curvature H =  0 in a neighborhood of the point P ; 
^b^JThe mean curvature H ^  0 in a neighborhood of the point P. 
jiTn~the firsPfcase) thejuipcipal curvatures Qf_the surface vanish at 
every point near the point P. Consequently, every poinFneajCPls an 
umbilical point. But then/as was shown above, the point P has a 
neighborhood which is a plane region.

We shall now consider the second case. We introduce a coordinate 
net, consisting of lines of curvature, on the surface. Suppose the 
w-curves (i.e. v =  constant) are those lines of curvature along which 
the normal curvature of the surface vanishes.

By Rodrigues’s theorem, nu = 0, since the normal curvature 
vanishes in the direction of the w-curves. It follows from this that the 
normals to the surface along the w-curves are parallel.

VJe shall show that the w-curves are~~5Tfaight Tines. We have 
ru-n = 0. It follows that along a «-curve7 [r — ro)-n =  0. Thus, 
the M-curve lies in a plane. Further, the vector nv ^  0 is directed 
along the normal to the w-curve. And since (nv)u = (nu)v =  0, the 
normals to the ^-curves are parallel. But this can hold only when 
the M-curves are straight lines.

Tljys, in bothcasgs, a developable surf ace is a ruled surf ace such that 
the tangent plane remains unchanged along the rectilinear generators. 
Thus, in the second of the cases considered, the tangent plane
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depends only on one parameter (v) and, consequently, the surface is 
the envelope of a one parameter family of planes.

§ 6. Surfaces of revolution. A surface F is said to be a surface 
of revolution if it is generated by rotating some curve about an axis. 
Curves of intersection of the surface with planes passing through the 
axis of ratotion are called meridians and curves of intersection with 
planes perpendicular to the axis are called parallels (Fig. 22).

We shall now derive the equation of the surface of revolution 
which is generated by rotating the curve

x = <p{u), z ----- ip[u)
lying in the x, z-plane, about the z-axis. The point {<p{u), 0, ip{u)) on 
the curve y goes over, upon rotation of the curve through an angle 
v, into the point

{<p{u) cos v, <p(«)sin v, ip(u)).
It follows that the equations of the surface of rotation are 

x = cp(u)cos v, y =  9>(w)sin v, z =  ip(u).
The curves v =  constant are meridians of the surface and u =  con­
stant are parallels.

We shall now find the first quadratic form of the surface. We have
E =  (9/  cos a)2 -f- (9/  sin v)2 +  ip'2 =  <j/ 2 +  ip'2,

F =  (9/  cos v)(— cp sin v) +  (9?' sin v)(<p cos v) =  0,
G = (— 95 sin v)2 +  (q> cos v)2 = cp2.

It follows that
ds2 =  (91'2 +  ip'2)du2 +  <p2dv2.

We see that the meridians and parallels form an orthogonal net 
(F =  0). This is, moreover, geometrically obvious.

We now find the second quadratic form. We have

<p” COS V, 9j" sin v, ip"
<p’ COS V cp' sin v ip'

—(psin v <p cos V 0 <p{ip"<p' — ip’<p")
EG -  F 2 <p2{<p'2 +  ip'2) ’

—v ’ sin v, <p' cos V, 0
<P' cos V 9/  sin v ip'

— 93 sin v <p cos V 0
EG -  F 2
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— <p COS V — cp sin  v 0
q>' cos v 99' sin  v ¥

— <p sin  v <p cos V 0
EG -  F 2 9/2 +  y,'2 ■

It follows that

<p(w'Y -  V>V)
<p̂(<p'2 -j- y,2)

+
yi'dv2

cp'2 4- %p'2

We see that the parallels and meridians form a conjugate net 
(M =  0). Since, furthermore, this net is orthogonal, parallels and 
meridians are lines of curvature. This is also clear geometrically, 
because planes, passing through the axis and perpendicular to the 
axis intersect the surface of revolution at a constant angle. Ac­
cording to the corollary to the theorem in § 3, Chapter VII, the 
intersection curves (i.e. the meridians and parallels) must be lines 
of curvature.

Concerning the first and second quadratic forms of a surface of 
revolution, it is essential to note that the coefficients of these forms 
depend only on u.

We shall find the principal curvatures of a surface of revolution. 
Suppose k\ is the curvature of a meridian and kz is the curvature of 
a parallel, ft is the angle formed by the tangent to the meridian 
with the axis of the surface. Since the meridian plane intersects the 
surface orthogonally, the normal curvature of the surface in the 
direction of the meridian equals the curvature of the meridian, i.e. 
k\. According to Meusnier’s theorem, we obtain the value kz cos ft for 
the curvature of the surface in the direction of the parallels. The 
quantity kz cos ft has a simple geometric interpretation. Namely, if 
we denote by d the length of the segment of the normal to the surface 
to the point of intersection with the axis (see Fig. 22), then

kz cos ft = \jd.

In concluding this section, we shall construct an example of a 
surface of revolution with constant negative Gaussian curvature.

Suppose the z-axis is the axis of revolution. The equation of the 
meridian on the surface in the x, z-plane is x =  x(z). The normal 
curvature of the surface in the direction of the meridian is

ki =  +  #'2)3/2.
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The normal curvature of the surface in the direction of the parallels is
k2 = -  \i{x(i +  X'*)*}. :

It follows that the Gaussian 
curvature of the surface is

K  =  -  x"/{x{\ + x'2)2}.

Multiplying this equation by 
xx', we get

. v'v"
Kxx' =

(1 +  *'2)2

Integrating, we have

K x2 +  c =  1/(1 +  x'2)

where c is an arbitrary constant. Flg 22
Set c =  1 so that further integra­
tion in terms of elementary functions will be possible. Then

Kx2 = - x ' 2l{\ +  x '2).

We now set x' =  tan •&. Then

K x2 =  — sin2 •&, x = - -sin d.

Further, we have

dz 1 cos2 •&
=  cot ■&, dz =  —= -------dft ____

dx V _  K  sin # V — K

V -  K

=  —1 =  ( — ------ sin a)
a / _  K \ s m &  / m .

It follows that

z =
V -  K

(cos ■& +  In tan $/2) +  c.

The constant c is unessential since it corresponds to a translation of 
the meridian parallel to the axis.

The equations of the meridian are
1

x =  — ____sin ■&,
V -  K

1
(cos +  In tan #/2).

V -  K
z =
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This curve is called a tractrix. Its distinguishing property is the fact 
that the segment of the tangent from the point of tangency to the 
2-axis is constant. Thus, the surface we have just found is obtained 
by rotating a tractrix. This surface is called a pseudosphere. Its 
equations are

1
x = -------- sin # cos w,

V -  K  
1

y = —------sin § sin cp,
V — K

z =  —---- . (cos # +  In tan $/2).
V -  K

Fig. 23 gives us an idea of the shape of the pseudosphere.

E xercises fo r  Chapter VII

1. Compute the second quadratic form for the helicoidal surface 
x = u cos v, y = u sin v, z = v.

Answer: 2dudvju.
2. Find the normal curvature of the paraboloid 2 — \(ax2 -j- by2) 

at the point (0, 0) in the direction (dx : dy). 
adx2 +  bdy2

Answer: k =
dx2 -f- dy2

3. Show that for an arbitrary parametrization of a plane the 
second quadratic form vanishes identically; show that the second 
quadratic form is proportional to the first for any parametrization 
of the sphere.

4. Find the asymptotic lines to the surface

2
X

+y x
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Answ er: x  —  ay, —----------   =X2 yi
5. Determine the asymptotic curves to the catenoid

x =  cosh u cos v, y =  cosh u sin v, z =  u.

Answ er: u  +  v =  constant, u — v =  constant.
6. Show that on the helicoid one family of asymptotic curves 

consists of straight lines and that the other consists of helixes.
7. Find the family of curves on the surface

ax2 by2 -f- cz2 =  1

which is conjugate to the family y =  constant.
Answ er: 1 — by2 =  Kx2, where A is an arbitrary constant.
8. Show that the translation curves (u =  constant, v — constant) 

on the translation surface

r  =  U  (u )  +  V  (v )

form a conjugate net.
9. Determine the principal curvatures of the paraboloid

z = a(x2 +  y2)
at the point (0, 0, 0).

Answer: 2a, 2a.
10. Determine the lines of curvature on the helicoid

x =  u cos v, y =  u sin v, z =  cv.

Answer: ln(w +  V u 2 +  c2) — v =  constant, 

ln(« +  Vm2 +  c2) v =  constant.

11. Find the lines of curvature of the hyperboloid z — axy.

Answer: 1 +  a2y2 +  ln(ay +  V 1 +  a2y2)̂  ±

±  — ( V 1 +  a2x2 +  In (a* +  V 1 +  a2x2)̂ j =  constant.

12. Find the mean and Gaussian curvatures of the hyperboloid 
z =  axy at the point x =  y =  0.

Answ er: K  =  — a2, H =  0.
13. Show that the mean curvature of the helicoid equals zero.



138 C h a p t e r  VII, § 6

14. Show that the mean curvature of the catenoid

V x2 +  y2
z =  a cosh------------

a
equals zero.

15. Show that if the mean curvature of a surface vanishes then 
its asymptotic net is orthogonal.

P r o b l e m s  a n d  T h e o r e m s  f o r  C h a p t e r  VII

1. Suppose r =  r(u, v) is an arbitrary surface, (uk, Vk) is a sequence 
of points converging to the point («o, ô) and (a : b) is the direction 
in which the normal curvature to the surface at the point («o, ô) is 
different from zero.

Show that if
u/c — Uo a
Vk — v o b

as k —> co then the directions of the lines of intersection of the tangent 
planes to the surface at the points (uo, to) and (Uk, Vk) converge to 
the direction conjugate to (a : b).

2. Prove that under a projective, and in particular under an 
affine, transformation of a surface, a conjugate net goes over into 
a conjugate n et; and an asymptotic net goes over into an asymptotic 
net.

3. Prove Koenig’s theorem: A net on an arbitrary surface is 
formed by the curves of intersection of the surface with a bundle 
of planes which pass through an arbitrary straight line g and 
the contact curves of surface with conicoids having vertices on 
the straight line g. This net is conjugate.

4. Prove that translation curves on the translation surface

r = U(u) + V{v)

(i.e. the curves u = constant, v =  constant) form a conjugate net.
5. Prove that on the Peterson surfaces

U(u) +  V(v) 
r  ~  ~ U (u Y + V { v )  ’

where U and V are vectors and U and V are scalar functions of the
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indicated arguments, the families u =  constant and v =  constant 
form a conjugate net.

6. If every point on a surface is spherical, then the surface is a 
sphere or a region on a sphere. Prove this assertion.

7. Find the spherical points on the ellipsoid
X2 y2 %2
----- V - — I—  =  1.O2 b2 ^  C2

8. Prove that if the asymptotic lines of different families have 
nonzero curvatures at their common point, then they have curva­
tures which are equal in magnitude but opposite in sign.

The absolute value of the curvature equals the absolute value of 
the Gaussian curvature of the surface at the prescribed point (Bel- 
trand-Enneper theorem).

9i. Suppose r(u, v, w) is a vector function of the arguments 
u, v, w. Prove that if

then
Vu'Vv —

f uv 'Yw =  ^vw '^u  =  ‘Yw u ' f v  =  o.
9%. Suppose we have given three families of surfaces:

<p(x, y, z) =  constant, y>(x, y, z) =  constant, %(x, y, z) =  constant, 
where the Jacobian

V. x) , 0
D(x, y, z)

We say that the indicated families form a triorthogonal system of 
surfaces if any two surfaces from distinct families intersect at right 
angles.

Prove that the surfaces of different families of a triorthogonal 
system intersect along the lines of curvature.

9a. Find the lines of curvature on the second degree surface

otx2 +  ay2 +  yz2 — 1

by referring it to a triorthogonal system of confocal second degree 
surfaces.

10i. A surface 0  is said to be parallel to the surface F  if it is the 
geometric locus of the endpoints of segments of constant length 
marked off on the normals to the surface F. We shall assume the
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corresponding points on the surfaces F  and 0  to be the endpoints 
of the segments mentioned in the definition.

Show that
a) the tangent planes at corresponding points of the surfaces F 

and 0  are parallel;
b) the parallel property is dual (i.e. if 0  is parallel to F, then F 

is parallel to 0 );
c) the lines of curvature of the surface F correspond to the lines 

of curvature of the surface 0.
102. If the point P  on the surface F  is neither a spherical point 

nor an umbilical point, then in a neighborhood of the point P the 
surfaces parallel to F and the developable surfaces generated by the 
normals to the surface F  along lines of curvature, form a triortho- 
gonal system of surfaces. Prove this assertion.

103. Prove that under an inversion, lines of curvature of a given 
surface go over into lines of curvature of the transformed surface.

104. Prove that under a conformal mapping of space onto itself, a 
sphere goes over into a sphere or a plane. Basing arguments on this 
fact, prove in turn that any conformal transformation is obtained 
by applying a similarity transformation, a translation, a mirror 
reflexion, and an inversion.

11. Express the mean and Gaussian curvatures of parallel 
surfaces in terms of the mean and Gaussian curvatures of the given 
surface and the distance between the parallel surfaces.

12i- Suppose the surface F  is

r = fill, v)

undergoes a deformation for which it goes over into the surface Ft 
in time t

r = f(u, v) tk(u, v)n.

Prove that for small t the change in the area of the surface sub­
jected to a deformation equals, to within terms of order t,

2T f  Hda,
F

where H  is the mean curvature of the surface F  and da is an element 
}f area on this surface.

122. The surface F is said to be minimal if every point P of this 
surface has a neighborhood bounded by a simple curve y such that
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any surface with boundary y has an area which is greater than or 
equal to the neighborhood to of the surface F. Prove that a mini­
mal surface has zero mean curvature.

13. Prove that a spherical mapping of a minimal surface in a 
neighborhood of every point, which is not an umbilical point, is 
conformal.

14. Show that the area of a region G bounded by the curve y on 
a minimal surface equals

s =  I f  (r, dr, n) 
v

(Schwartz’s formula).
15. Prove that if a minimal surface is a ruled surface then it is 

either a plane or a helicoid.
16. Prove that if a minimal surface is a surface of revolution, 

then it is either a plane or a catenoid.
17. Find by quadratures all surfaces of revolution with constant 

Gaussian curvature.



C h a p te r  VIII

FUNDAMENTAL EQUATIONS OF THE 
T HE ORY OF SURFACES

In the two preceding chapters we considered a number of prob­
lems concerning the theory of surfaces for the solution of which it 
was sufficient to know only the first and second quadratic forms of 
the surface.

The question naturally arises, to what degree do the first and 
second quadratic forms of the surface define the surface and what 
conditions ought the quadratic forms

Edu2 +  2 Fdudv -f- Gdv2,
Ldu2 +  2 Mdudv +  Ndv2

satisfy in order that there exist a surface for which these quadratic 
forms are the first and second quadratic forms respectively?

The answer to this question will be given in the last section of 
the present chapter by the Bonnet theorem.

§ 1. The Gauss formula for total curvature of a surface.
We shall now obtain an expression for the Gaussian curvature of a 
surface in terms of the coefficients of only the first quadratic form 
and their derivatives.

We already found an expression for the Gaussian curvature in 
terms of the coefficients of the first and second quadratic forms, 
namely

LN — M 2 
~  E G -  F2 '

Substituting everywhere the expressions for the coefficients of 
the second quadratic form

J uur V?v) uv^ul'v) {y VV? U? v)

~~ VEG -  F2 ’ ~  VEG -  F2 ’ ~  VEG -  F2
we have

K  =   p2~j 2 {ir u u . ? v )  {r vvrurv) —  {r uvr u'1'v)2}■
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It follows from this, applying the known identity

that

K = -
1

{EG -F  2)2

(ai-a2) ( a i - b 2) ( a i ‘C2)
lCl)(a2b2C2) = (bx-az) (i l ‘ b2) ( b y c 2) 1

(ci • b2) (ci • c2)

yuu*yw yuu*•'u Yuu'Yv r%v2 Yuv'Y u ruv *
y u * y w E F — I'u'l'uv E F
yv*yw F G ?v'?uv F G

(£ G -£ 2)2

Yuu'fvv Y UV2 Yuu‘‘Yu 1’uu'l'v
ru •rvv E F
^v'^vv F G

0 yuv* ̂ u^uv'^v
ru-ruv E F
Y'o'Vuv F G

Differentiating the expressions
ru2 = E, ru -rv =  F, rv2 = G 

with respect to u and v, we obtain

Yuu'Yu — \E u ,
T ’U V ' I ' u  =  \E V,
I'm'i'v =  iGp,
Yuv’^v =  \G u>
YuU’Yv =  Fu  -- TEt),
?vit’^u =  F v — \G U-

If we now differentiate the fifth equation with respect to v, the 
fourth with respect to u, and then subtract the resultant 
equations termwise, we obtain

ruu’l'vv ?UV2 =  — \GuU "T F uv — \E VV.

Substituting the values thus obtained into the expression for the 
Gaussian curvature, we get

(EG -  £ 2)2

0, \E V, \GX
\E V E F
\GU F G

(—\Guu-\-Fuv 
(FV-!>GU) 

$GV

— \E U,
E
F

(Fu -  \E V) 
F 
G

Thus, the Gaussian curvature of a surface may be expressed in
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terms of the coefficients of the first quadratic form and their 
derivatives. It follows that the following corollaries hold:

1. Isometric surfaces have the same Gaussian curvature at 
isometrically corresponding points. In particular, the Gaussian 
curvature of a surface remains invariant under bending.

2. Since developable surfaces are by definition locally isometric 
to a plane, and a plane has zero Gaussian curvature, the Gaussian 
curvature of developable surfaces vanishes everywhere.

3. The first and second quadratic forms of a surface are not 
independent. Namely, the discriminant LN  — M 2 of the second 
quadratic form of a surface may be expressed in terms of the coef­
ficients of the first quadratic form and their derivatives.

In conclusion we note that if a surface is parametrized in such a 
way that the first quadratic form is

/  =  du2 -f Gdv2, 

then the Gaussian curvature of the surface is

K  =  -  1 /V g(VG)uu.

In order to verify this, it suffices to use the Gauss formula.

§ 2. Derived form ulas. The derived formulas for a surface are 
analogous to the Frenet formulas for curves. They yield expressions 
for the derivatives of the vectors ru, rVl n in terms of these vectors 
and the coefficients of the first and second quadratic forms of the 
surface. We shall now proceed to obtain these formulas.

Since the vectors ru, rv, n do not lie in one plane, an arbitrary 
vector permits a representation in the form of a linear combination 
of the vectors ru, rv, n. In particular,

ruu =  AiG* +  +  An n,
?uii =  Ti21̂  +  AaV* +  A12 n, 
rvv =  r ^ - fu  +  -f- A22w,
nu =  au ru + ai2rv +  “low, 
nv = “2i Vu +  tf-vaXv +  «20«-

We shall show that the coefficients F^k, Ay, ay can indeed be 
expressed in terms of the coefficients of the first and second quad­
ratic forms of the surface.
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We note, first of all, that the coefficients aio and 1x20 vanish. To 
see this, it suffices to form the scalar product of the two equations 
with n. We then get

nu-n =  aio, nv-n =  a20.
But

nu-n =  4(w2)m =  0, nv-n =  %(n2)v =  0.
In order to obtain expressions for an  and aj2, we shall form the 

scalar product of the equation
nu =  “lVw +  a-liTv 

with ru and rv. We obtain

It follows that 

an

— L =  a n £  +  ai2.F,
— M  =  ari-F -T ai2C-

-  LG + MF LF -  ME
EG ’ “12 “  EG -  1** ‘

In an analogous manner, we obtain 
NF -  MG

“21 “  T g -  P “ ' “22
A7: • MF

EG -  F2
In order to obtain the coefficients An, A12, A22 wc form the scalar 

product of the first three formulas with n. We get
An =  L, /12 =  M, A22 =  N.

In order to obtain the expressions for the coefficients Ty^, we 
form the scalar product of the first three equations with ru and rv. 
We then obtain the following relations for the coefficients /"y*:

\ r ^ E  +  / w  -  \E U,
[ / W  +  A i2G =  Fu -  \E V\
\ r ^ E  +  ri22F =  a a ,  
l / ,221i r +  A aaG =  *G«;
\r22lE +  r2<z2f  =  f v — \ gu,
1^22^ +  r 22*G =  \GV.

We can find the expressions for the six coefficients 1 yfc from 
these six equations. We shall not write out the values of the coef­
ficients A ifc i we shall note only that they can be, in distinction to 
the other coefficients, expressed in terms of only the coefficients of 
the first quadratic form and their derivatives.
P ojjoitIov, Diff. G eom etry
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We have thus shown that the derivatives of the vectors ru, rv, n 
can indeed be expressed in terms of the vectors ru, rv and n with 
coefficients depending only on the coefficients of the first and 
second quadratic forms of the surface.

In conclusion, we shall find the coefficients A /fc for the case when 
the first quadratic form of the surface is

I  == du2 +  Gdv2.

If we set E  =  1, F =  0 in the equations for r ijk, we obtain
A i1 =  0, A  i2 =  0,
A 21 =  0, A 22 =  \GujG,
A 21 =  -  IGU, A 22 =  \GvjG.

§ 3. The Peterson-Codazzi form ulas. We already know that 
the first and second quadratic forms of a surface are not inde­
pendent. One of the dependence relations between the coefficients 
of the first and second quadratic forms of a surface is given by the 
Gauss formula. It enables one to express the discriminant LN — M 2 
of the second quadratic form in terms of the coefficients of the first 
quadratic form and their derivatives.

We now obtain two new relations between the coefficients of the 
first and second quadratic forms of a surface.

We have the obvious equalities

(?uu)v — (ruv)u =  0,
(l'vv)u — ('ruv)v =  0,
(nu)v — (nv)u =  0.

If in these equations, the expressions in parentheses are replaced 
by the derived expressions given in § 2, and after differentiating, 
again using the expressions in § 2, we obtain three vector equa­
tions of the form

Airu +  Birv +  Cm =  0,
A 2 ru +  B 2rv +  C2« =  0,
A%fu -f- Bg^v “I- C3W =  0,

where Ai, A 2, •••, C3 are expressions, constructed in a known 
manner, in the coefficients of the first and second quadratic forms 
of the surface and their derivatives. We have nine scalar equations
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from these three vector relations,
Ai =  0, Bi = 0, Ci =  0,
^2 =  0, Z?2 =  0, C2 =  0,
A 3 =  0, B 3 =  0, C3 =  0.

It turns out that of these nine relations only three are distinct, of 
which one is equivalent to the Gauss formula which we obtained 
earlier and the other two are

(EG -  2FF +  GE){LV -  M u)
- ( E N  -  2FM + GL)(EV -  Fu) +

(EG -  2FF  +  GE)(MV -  N u)
-  (EN -  2FM  +  GL)(FV -  Gu)

E E u L
F F u M
G Gu N
E E v L
F Fv M
G Gv N

The last two relations were first obtained by Peterson, in a somewhat 
different form; they were later obtained by Mainardi and Codazzi.

§ 4. The existence and uniqueness of a surface with 
prescribed first and second quadratic forms. The following 
theorem, due to Bonnet, holds.

Theorem. Suppose
Edu2 +  2Fdudv +  Gdv2,
Ldu2 +  2 Mdudv +  Ndv2

are to arbitrary quadratic forms the first of which is positive definite. 
Suppose the coefficients of these forms satisfy the Gauss-Peterson- 
Codazzi conditions. Then there exists a surface, unique to within 
position in space, for which these forms are the first and second 
quadratic forms respectively.

Proof. Let us consider the following system of differential 
equations for the vector functions f, rj, £:

£u =  F n 1̂  +  F n 2v +  EC,
Cv =  A 21! +  r i 22r] +  MC, 
rju =  r i 2 l C +  r i 2 2rj +  M C ,  

rjv =  F22l C +  T222»7 +  NC,

Cu =  a i l l  +

Cv =  “ 2 l f  +  0C2-zrj



148 Chapter VIII, § 4

where the coefficients /y*  and ay are expressed, in a known 
manner, in terms of the coefficients of the prescribed quadratic 
forms.

It is known from the theory of differential equations that this 
system has a unique solution for given initial conditions (i.e. the 
values of f, v< C are given in some point (uo, vo)) if the integrability 
conditions are satisfied, i.e. if the equations

(A iJf +  A +  L£)v -  (A 2!£ +  r r fn  +  M£)u =  o,
(As1! + A 22»? +  MC)V — (A 21£ +  A 22»? +  N£)u — 0,

(“ll£ +  <*l2V)v — (a2if  +  «22>?)m =  0

are identically satisfied in virtue of the equations of the system. 
Thus, the integrability conditions reduce to the Gauss-Peterson- 
Codazzi conditions.

Since the Gauss-Peterson-Codazzi conditions are satisfied for the 
given quadratic forms, the integrability conditions are satisfied for 
the system of differential equations considered.

Suppose £o, Vo, Co are three vectors which satisfy the conditions

Co2 =  E(uo, v0), £0->?o =  F(u0, v0), vo2 =  G{uo, v0),

Co'Co =  0, vo'Co =  0, Co2 =  1-

Suppose f, rj, C is a solution of our system which satisfies the 
initial conditions: £(u0, v0) — £0, viuo, vo) = Vo, C(̂ o, vo) = Co-

Since £v = Vu, there exists a vector function r(tt, v) for which 
ru =  C, =  V- We shall show that the surface defined by the vector 
equation r = r(u, v) has, in a neighborhood of the point (u o, z>o).

Edu2 +  2 Fdudv +  Gdv2

as its first quadratic form and

Ldu2 +  2 Mdudv +  Ndv2

as its second quadratic form.
We shall express the derivatives, with respect to u, v, of the six 

quantities f2, v2> C2. £'V< V'£> £'£ again in terms of these same 
quantities, making use of the equations of our system. Then we 
obtain twelve equations
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( £ 2 ) u

(*) (f2)* = ^ 2 ( l2,^ 2,

(C-£)v = R i2(Z2,r)2, ■■■),

where R\, R2, • • •, R 12 are linear homogeneous expressions in £2, rp, 
•••, £•£•

The twelve equations (*) can be considered as a system of 
differential equations for £2, rj2, • • ■, £•£. This system, obviously, is 
satisfied if we replace £2, rj2, • • •, £•£ by E, G, • • •, 0, respectively. 
Both these solutions have the same initial conditions (i.e. the same 
values at the point (uq, vo)). From this it follows, in virtue of the 
uniqueness of the solution, that

£ 2 = E, n2 = G, £-r) = F, £ • £ =  0, C-ji =  0, £2 = 1 .

Since ru =  £, rv — rj, we have

ru 2 =  £2 =  E, ru-rv =  £-77 =  F, rv2 =  r/2 =  G.

Thus, the surface we have constructed has

Edu2 +  2 Fdudv -j- Gdv2

as its first quadratic form.
Further, since £•£ =  77 •£ =  0 and £2 =  1, £ is a unit normal 

vector to the constructed surface, and consequently, the coef­
ficients of the second quadratic form of the surface r =  r(u, v) arc 
equal to

£«•£, £«■£< ??«'£•

Taking into consideration the expressions for the derivatives £u, 
£„ and rjv in terms of £, rj, £ and the relations £•£ =  0, 77 •£ =  0, 
£2 =  1, we have

£«•£ =  £, £*-£ =  M, rjv'C = N.

Hence, the surface thus constructed has

Ldu2 +  2 Mdudv +  Ndv2

as its second quadratic form.
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The existence of a surface with prescribed first and second 
quadratic forms has thus been proved.

We shall now prove the uniqueness, to within position in space, of 
such a surface.

Suppose 0 i  and 0 2  are two surfaces whose first and second 
quadratic forms coincide. We shall associate the surfaces 0 i  and 
0 2  by means of two corresponding points (e.g. by points corre­
sponding to the same values of the parameters, say («o. ^o)). with 
the corresponding directions and normals. Such a correspondence is 
possible in virtue of the fact that the first quadratic forms coincide. 
Suppose r =  r\{u, v) and r =  ^(m, v) are the equations of the 
surfaces after such a correspondence.

The system of differential equations in f, tj, £ obviously is 
satisfied if we take

£ =  rlu, II £ =  ni

£ =  ?2u> n =  y2V, C - «2-

And since both these solutions coincide at the point (uo, vo), they 
coincide identically. Hence,

rm{u, v) =  rzu{u, v), n v(u, v) = r2v{u, v)
or

dn{u, v) = dr2(u, v).
It follows that

n(u, v) = r2(u, v) -j- c.

Since r\ =  Yz when u = u$, v =  ô. we have c =  0 and, conse­
quently, ri(u, v) =  Y2(u, v).

Thus, the surfaces 0 i  and 0 2  are indentical, to within position in 
space.

This completes the proof of the theorem.

Problems and Theorems for Chapter VIII

h. Show that if the linear element of a surface is 
ds2 =  k(du2 +  dv2), 

then the Gaussian curvature of the surface is

K = -  - -  A In A,
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where A is the Laplace operator

_  /  82 82 \
“  \~du* +  ~8v2)  '

I2. Show that the surface with linear element

du2 +  dv2ds2 = -------------------
(u2 +  v2 4- c)2

has constant Gaussian curvature.
2\. Show that if the linear element of a surface has the form

ds2 — du2 +  2 cos co dudv +  dv2,

then the Gaussian curvature of the surface is

K  = <*>uv
sin u>

22- Prove that an arbitrary Chebyshevian net in a plane is 
defined by the vector equation

r = <p(u) + f{v).

The curves u =  constant and v =  constant form the net.
3. Find the Christoff el symbols Fy* for the case when the linear 

element of the surface has the form

ds2 = k(du2 +  dv2).

4i. Show that if the coordinate net on a surface is asymptotic, 
then the following equalities are satisfied:

J (EG -  F2)(In K)u +  FEV -  EGU = 0,

\(EG -  F 2)(In K)v +  FGU -  GFV =  0,

where K  is the Gaussian curvature of the surface.
42. Prove that the asymptotic curves on a surface with constant 

negative curvature form a Chebyshevian net. And, conversely, if 
the asymptotic net on a surface is Chebyshevian, then the Gaussian 
curvature of the surface is constant.

5i. If the coordinate net on a surface consists of lines of curvature,
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then the Peterson-Codazzi formulas assume the form
Lv =  HEV,
Nu — HGU,

where H is the mean curvature of the surface. Show this.
52- If, on a minimal surface, one takes the lines of curvature as 

coordinate curves, and chooses the parameters u and v for the 
corresponding images, then the first and second quadratic forms 
assume the form

I  =  I(du2 +  dv2),
I I  = du2 — dv2.

Prove this assertion.
53. Suppose coordinates u, v arc introduced on a minimal 

surface as in Exercise 52. Prove successively the following assertions:
a) if r(u, v) is the position vector of a point on the surface, then

Ar =  0,
where A is the Laplace operator. Thus, the coordinates x(u, v), 
y(u, v), z(u, v) of the vector r(u, v) are harmonic functions;

b) if fi(w), fz{w), f3{w) (w = u +  iv) are analytic functions with 
real part x(u, v), y(u, v), z(u, v) respectively, then

h '2 +  h '2 +  h '2 =  0.

54. If f\{w), fi{w) are three arbitrary analytic functions of 
the variable w = u +  iv, satisfying the condition

A'2 +  H 2 +  H 2 =  0

and <pi(u, v), <p2,(u, v), <p$(u, v) are the real parts of these functions, 
then the surface defined by the equations

x = <p\{u, v), y = <p2(u,v), z = (p3{u,v),

is minimal. Prove this.
55. Prove that any minimal surface can be defined by the 

equations
z = Re/  (tp2{w) +  y>2(w))dw, y = R e iJ  (<p2(w) — \p2(w))dw, 

z = Re f  2i<p(w)f(w)dw,
where <p and ip are analytic functions of w — u +  iv, and Re denotes 
the real part.



C h a p t e r  IX

I NTRI NS I C GEOMETRY OF SURFACES

Intrinsic geometry of a surface is that branch of geometry in 
which we study the properties of surfaces and figures on them 
which depend only on the length of curves on the surface. With 
respect to regular surfaces one can say that their intrinsic geometry 
studies the properties of the surfaces and figures on them which are 
defined by the first quadratic form.

To the realm of intrinsic geometry belong length of curves on a 
surface, the angle between curves, areas of regions, and the Gaussian 
curvature of a surface.

In the present chapter we shall consider new concepts for surfaces 
which are related only to its first quadratic form and thus belong 
to the intrinsic geometry of the surface.

§ 1. Geodesic curvature of a curve on a surface. Suppose 0  
is a regular surface and that y is a curve on 0. We draw the tangent 
plane a to the surface at an arbitrary point P of the curve y and we 
then project a small neighborhood of the point P  on the curve y 
onto this plane. Then we obtain some curve y in the plane a. The 
curvature of y at the point P  is called the geodesic curvature of the 
curve y at the point P. The geodesic curvature at the point P  is 
assumed to be positive or negative depending on whether the 
rotation of the tangent to the curve y in passing through the point P 
gives rise to a right or left screw in comparison with the direction 
of the normal to the curve at P. We shall find the expression for the 
geodesic curvature of the curve.

We draw a cylindrical surface through the curve y with generators 
perpendicular to the plane a. By the Meusnier theorem the curva­
ture k of the curve at the point P  and the curvature k of the curve y 
at the same point are connected by the relation

k cos ■& = K ,

where & is the angle formed by the principal normals to these 
curves.
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Suppose r = f(s) is the natural parametrization of the curve y, 
f  and n are the unit tangent and unit normal vectors to the curve y, 
and that n is the unit normal vector to the surface. Then f"  =  kn, 
f  x n are directed along the normals to the curve y at the point P 
and, consequently, except for sign,

k = k cos ■& =  (f", f', n).

We now go over to an arbitrary parametrization of the curve y. 
We have

ft =  n't,' = h'(\l\h'\), 
r„" = f(ll\n'\2) + r t'(\lh'\),'.

If we substitute the above expressions for r,' and f into the 
formula for k ,  we obtain

« =  U/Ir'|3/,)(f",r', n),
where differentiation is with respect to the parameter t.

Suppose r = r(u, v) is any regular parametrization of the surface 
in a neighborhood of the point P  and let u = u{t), v = v(t) be the 
equation of the curve y in a neighborhood of this point. Then

fit) =  r(u{t), v(t)), 
f  =  ruu' +  rvv', 

f ” = rUv,u'2 +  2 ruvu'v' +  rvvv'2 +  ruu" +  rvv" =
=  iu ' T- -d)ru -(- (y T" B)rv Cn,

where
A =  r n V  2 +  IFv^u'v' +  A 21v'2, 
b  =  r n 2M'2 +  2ri22u'v' +  r 22v 2,
C =  Lu'2 +  2 Mu'v' +  Nv '2.

Substituting the expressions for r' and f"  into the formula for k  

and carrying out the simple computations we obtain

k  =  {V E G -F 2l{Eu'2+2Fu'v'+Gv'2)3l*}{u"v'-v"u'+ Av'-Bu').

Since the quantities are expressed in terms of the coefficients 
of the first quadratic form of the surface only, the geodesic curva­
ture of the curve on the surface is determined by only the metric 
of the surface and, consequently, remains invariant under bending 
of the surface.
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We shall find a formula for the geodesic curvature of the curve in 
the case when the first quadratic form is

I  =  du2 +  Gdv2.

In this case, as was shown in § 2, Chapter VIII,

A i 1 =  0, A i 2 =  o,
A 2 1 =  0, A 2 2 =
A 2 1 =  - \ G U, A 2 2 -  \GvjG.

It follows that
A =  -  \Guv'2,

B =  (G«/G)*V +  \{Gv!G)v'2.

Consequently,

k  =  {VG/(m'2 +  Gv'2)} {w'V -  v"u' -  \Guv'3 -

-  \{GvjG)u'v'2 -  (GuIG)u'2v'}.

§ 2. Geodesic curves on a surface. A curve on a surface is said 
to be a geodesic curve if its geodesic curvature vanishes at each of 
its points. We note two simple properties of geodesics.

1. If two surfaces are tangent along some curve y which is a 
geodesic curve on one of the surfaces then y will also be a geodesic 
curve on the other surface. This follows from the fact that the 
geodesic curvature of the curve will be the same independently of 
the surface we consider this curve to be on.

2. A necessary condition that the curve y be a geodesic curve is 
that the osculating plane to the curve y be perpendicular to the 
tangent plane to the surface at every point where the curvature of 
the curve y does not vanish. In fact, the curvature k of the curve y 
is connected with its geodesic curvature k  by the relation k cos & = k .

It follows that a necessary condition for y to be a geodesic is that 
cos & =  0 for k ^  0, which means that the osculating plane to the 
curve is perpendicular to the tangent plane to the surface.

In order to obtain the differential equation of the geodesics, it 
suffices to set the expression for geodesic curvature equal to zero. 
Thus, the differential equation of the geodesics is

u"v' — v"u' +  Av' — Bu' =  0.
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Theorem. A unique geodesic can be drawn in any direction through 
every point on a regular surface.

Proof. Suppose P(uo, vo) is a n y  p o in t on th e  su rface and  
suppose (m0' : vd) is an  a rb itra ry  d irec tio n  a t  th is  p o in t.

We consider the following system of differential equations

u" +  A =  0 , v" +  B  =  0 .

Suppose u =  u(t) and v = v(t) is the solution of this system, 
satisfying the initial conditions

u(to) =  MO, v(t0) =  V0, u'(to) =  Mo', v'(to) =  V0'.

T hen  th e  cu rve  on th e  surface, defined  b y  th e  equ a tio n s 

M =  u(t), V =  V (t), 

is a  geodesic inasm uch  as

m V  — v"u' +  Av' — Bu' =  0.

T h is geodesic passes th ro u g h  th e  p o in t (mo, v o )  a n d  has th e  d i­
rec tion  (mo' : vd) a t  th is  p o in t. W e shall show  th a t  it  is un ique.

Suppose two geodesics y i and y% passing through the point 
(mo, vo) on the surface have the same direction [ud : vd). Suppose 
for definiteness that Mo' ^  0. Then both curves can be defined by 
the following equations in a neighborhood of the point (mo, v o )  :

V ■ Vi(u), V =  Vz{u) .

T he  cond ition  th a t  th e  geodesic cu rv a tu re s  of th e  cu rves yi an d  yz 
equal zero y ields

— Vi” -f- Avi' — B =  0 ,

— vz" -f- Avz — 5  =  0 .

T hus, th e  fu n c tio n s i^i(m) an d  vz (m) sa tisfy  th e  sam e d iffe ren tia l 
eq u a tio n  w ith  th e  sam e in itia l cond itions

z>i(mo) =  vo, vi{uo) =  vojuo,  
vz(uo) =  vo, vz'(uo) =  vdfua'.

F ro m  th is  i t  follows th a t  z>i(m) =  vz{u), i.e. th e  cu rves y i an d  yz 
coincide in  a  ne ighborhood of th e  p o in t (mo, v o )  and , consequen tly , 
th e y  coincide everyw here.

T h is com plete  th e  proof of th e  theorem .
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§ 3. Semigeodesic parametrization of a surface. Suppose <7> 
is a regular surface and that y is any regular curve on 0  which passes 
through the point P. Let r = r(u, v) be any regular parametrization 
of the surface and let u — u(t), v = v(t) be a regular parametrization 
of the curve. Suppose the point P corresponds to the values uq, vo 
and to of the parameters.

We shall assume for definiteness that v'(to) #  0. We solve the 
equation v =  v(t) with respect to iin  a neighborhood of (vo, to). We 
obtain t =  t(v).

We now consider the family S of curves in a neighborhood of the 
point P, defined by the equations u =  u(t(v)) c (c is a constant). 
The curve y is a member of this family. As was shown in § 2, Chapter 
VI, the surface can be parametrized in a neighborhood of the point 
P  in such a way that the curves of the family 5 and those of a 
family orthogonal to 5 will be coordinate curves. Suppose the 
surface is parametrized in precisely this way and let the curve y 
have the equations u = u q ,  v = v(t).

We draw through the point (t) on the curve y a geodesic yt in the 
direction perpendicular to the direction of the curve y at this point. 
For t sufficiently close to to, the geodesics yt can be defined in a 
neighborhood of the point P by means of the equations

V =  v(u, t)

where v(u, t) is a function satisfying the equation of the geodesics 
with respect to u

_  v" _|_ Av' -  B =  0.

It follows from the theorem on the differentiability of the so­
lutions of differential equations with given initial conditions that 
the function v(u, t) is regular in t.

Differentiating the identity v(t) =  v{uq, t) with respect to t and
8

noting that v'(t) ^  0, we conclude that —  v(uo, t) ^  0. This permits8t
the solution of the equation v =  v(u, t) in a neighborhood of (uo, 
vo, to) with respect to t. We obtain

t = <p(u, v) (<p„2 +  <pv2 ^  0).

This equation yields the geodesics yt in a neighborhood of the point 
P  for t near to.
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As was shown in § 2, Chapter VI, the surface can be parametrized 
in a neighborhood of the point P  in such a way that one family of 
coordinate curves will be the curves <p(u, v) =  constant, and the 
second family will be perpendicular to the first. Such a parametriza- 
tion of the surface is called semigeodesic.

We shall now discuss the first quadratic form of a surface if the 
parametrization is semigeodesic.

Since the parametrization is orthogonal, F =  0 and, consequently

I  = Edu2 +  Gdv2.

One family of coordinate curves, for example the curves v =  
constant, are geodesics. Setting v =  constant into the equations for 
the geodesics

u"v' — v"u' Av' — Bu' =  0 

we obtain B =  0, from which we have

A i2 =  -hEvIG  =  0,

i.e. E is independent of v.
Since E is independent of v, we can simplify the first quadratic 

form by introducing a new parameter u in place of u, where the new 
parameter is connected with u by the relation

du =  VE(u)du.

Then the first quadratic form will be

/  =: du2 +  Gdv2.

In order to understand the geometric interpretation of the para­
meter u, it suffices to note that the length of the segment of any 
geodesic v =  constant, included between the curves u =  a , it = c2, 
does not depend on v and is equal to |ci — C2 \.

By introducing a new parameter v, connected with v by the 
relation dv = VG(v, uo)dv, one can write the first quadratic form 
of the surface as

/  =  du2 +  Q{u, v)dv2,

where G =  1 along the curve u = uq.
If the curve u =  «o is also geodesic then it follows from the 

equation of the geodesics that Gu = 0 along this curve.
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§ 4. Shortest curves on a surface. A curve y on a surface 
joining the points P  and Q is called a shortest curve if any curve on 
the surface joining the points P and Q has length greater than or 
equal to the length of the curve y.

T h e o r e m . A geodesic on a sufficiently small segment is a shortest 
curve. More precisely, if y is a geodesic and P is a point on it, and R 
and S are points on the geodesic, sufficiently close to P, then the 
segment RS on the geodesic is a shortest curve.

P r o o f . We draw through the point P  the geodesic y which is 
perpendicular to y and we construct a semigeodesic coordinate net, 
taking the geodesics perpendicular to y as the family of M-curves. 
We choose the parameters u and v so that the point P  is assigned the 
values u = v =  0 and the linear element of the surface has the form

I  = du2 +  Gdv2.

We shall assume that the segment RS on the geodesic y is not the 
shortest curve and that a curve y on the surface, joining the points 
R and S, has length less than the length of the segment RS on 
the geodesic y.

If the points R and 5 are sufficiently close to P, the curve y 
passes through the interior of a neighborhood Up of the point P, 
where the semigeodesic parametrization u, v is defined. We shall 
show this.

Since the form du2 +  Gdv2 is positive definite, there exists an 
e >  0 such that if u2 +  v2 <  £ then

\r(u, v) — r(0, 0)| >  kV u2 -j- v2,

where k is a positive constant.
We shall now assume that the points R and S are so near the 

point P  that their space distance from P  is less than <5. Then if the 
curve y joining R and S passes outside the “circular disc” u2-\-v2<e 
into the point Q, then the length of y is, as is known, greater than 
2ke — 2d. It suffices to equate the length of the curve y with the 
sum of the lengths of the rectilinear segments RQ and QS. We have 
come to a contradiction since the length of the segment RS on the 
geodesic y tends to zero when 6 ^ -0 , and the length of the curve y 
is then bounded below by a positive number.

Hence, the curve y passes through the interior of the neighbor­
hood Up. In order to simplify the discussion, we shall assume that



160 Chapter IX, § 5

the curve y is pieceswise smooth. Suppose u — u{t), v = v(t) is its 
equation. The length of the curve y is

(S )_______________(S)
s(y) =  f  V V 2 +  Gv'2 dt^>J |u'\dt ;> |ms — ur\.

(«) (R)
But |Ur — | is the length of the segment RS on the geodesic y. We
have thus arrived at a contradiction.

This completes the proof of the theorem.

§ 5. The Gauss-Bonnet theorem. Suppose G is a region, 
bounded by the closed piecewise regular curve y, on aregular surface <£. 
Assume G is homeomorphic to a circular disc. We shall direct the 
curve y in such a way that by traversing the curve in this direction

on that side of the surface 
toward which the normal n is 
directed, the region G remains 
on the right.

We shall denote the geodesic 
curvature of the curve y at 
an arbitrary point by k ,  and 
ai, <X2, • • •, «« will be the angles 
formed by the links y i ,  yz, ■ ■ ■, 
yn of the curve y on the side 
of the region G (Fig. 24). The 
following theorem holds.

Theorem. I f K  is the Gaussian curvature of the surface and the 
double integration is over the area of the region G, then

£  /  nds +  £  (rc —  a t )  =  2n — f f  Kdo. 
k y* k a

In particular, if y is a regular curve, then

|  xds =  2n — f  f  Kda. 
y a

Proof. For simplicity of discussion, we shall assume that the 
curve y is regular and that a semigeodesic parametrization of the 
surface can be introduced in the entire region G.

Taking into consideration the formula for geodesic curvature of 
the curve in semigeodesic coordinates, obtained in § 1, we shall have
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VG (  Gv Gu \Kds =  —------— - [ u " v '- v " u '- \G uv'3 -  =
(u 2+ G v2) \  G G /(w'2+Gv'2)

VGv'=  — d arctan---- 7----- v'(VG)ndl.u

Since the function arctan is multiple valued and its values corre­
sponding to the same value of the argument differ by multiples of n, 
we have

§ — d arctan VGv'ju' = kn, 
v

where k is some integer.
Furthermore, by Ostrogradsky’s formula, we have

<j> — (V G)udv=  JJ (VG)uududv =  JJ Gdudv =
y a a

- I S -

a
Kda.

Thus, we have
|  Kds = kn -f- J/  — Kda.

It remains to explain why k is an integer.
We have

kn = § — d arctan V Gv'ju'. 
y

If G were equal to 1, then the quantity kn would be an angle 
through which the tangent to the curve y in the u, v-plane corre­
sponding to the curve y on the surface rotates as it traverses this 
curve. The magnitude of this angle, as is known, equals 2n.

Since the value of the integral

/ Mu. v)v'— d arctan----------- (A(w, v) >  0)
u'

v
depends continuously on A(w, v) and equals 2n for X(u, v) =  1, it 
equals 2n for any function A(w, v) >  0, and in particular, for 
A(w, v) = VG.

This completes the proof of the theorem.
Pogorelov, Diff. G eom etry.
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A region on a surface is called a geodesic triangle if it is bounded 
by three geodesics and is homeomorphic to a circular disc.

The Gauss-Bonnet theorem, applied to a geodesic triangle, 
yields

— Kda.
A

From this it follows that the sum of the angles of a geodesic 
triangle on a surface with positive curvature is greater than n, on a 
surface with negative curvature it is less than n, and on a surface 
with zero curvature it is equal to n.

§ 6. Surfaces with constant Gaussian curvature. Suppose 0  
is a surface with constant Gaussian curvature K  and that P  is any 
point on 0. We introduce a semigeodesic parametrization on 0  in a 
neighborhood of the point P, starting with an arbitrary geodesic 
which passes through P. The first quadratic form of the surface will 
be

I  =  du2 +  Gdv2,

where it can be assumed that G(0, v) = 1 and Gu(0, v) =  0.
Since the Gaussian curvature of the surface is constant and equal 

to K, the coefficient G must satisfy the differential equation

(*) (VG)UU +  KVG  =  0.

(In the case of a semigeodesic parametrization of the surface, the 
Gaussian curvature is K  =  — (VG)Uul{VG).)

We shall distinguish three cases: a) K  >  0, b) K  <  0, c) K  =  0.
In the first case, the general form of VG  which satisfies equation 

(*) will be
VG  =  A (v) cos V K u  +  B(v) sin VKu.

Since G(0, v) =  1 and Gu{0, v) =  0, we have A(v) =  1 and 
B(v) =  0. Thus, in the case K >  0 there exists a parametrization 
of the surface for which the first quadratic form is

I  =  du2 cos2 V K  udv2.

Analogously, in the second case, the first quadratic form of the 
surface is

I  =  du2 +  cosh2 V — K udv2.
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Finally, in the third case, we have
I  =  du2 +  dv2.

T h e o r e m .  All surfaces with constant Gaussian curvature K  are 
locally isometric. Moreover, if 0 \  and 02 are surfaces with constant 
Gaussian curvature K, P i and P% are any points on these surfaces, l\ 
and I2 are arbitrary directions at these points, then there exists an 
isometric mapping of a neighborhood of the point P i on the surface 0 \  
onto a neighborhood of the point P 2 on the surface 0 2 , for which the 
direction 12 on the surface 0 2  at the point P 2 corresponds to the direction 
li on the surface 0 i at the point P\.

To prove this theorem it suffices to introduce a semigeodesic 
parametrization in neighborhoods of the points P i and P 2 on 
the surfaces 0 i  respectively 0 2  starting with the geodesic directions 
l\ and h- In this connection, the first quadratic forms of the surfaces 
will be the same, and the required isometric mapping is obtained by 
setting points with the same coordinates into correspondence.

P r o b l e m s  a n d  T h e o r e m s  f o r  C h a p t e r  IX

1. Show that if a geodesic curve is also an asymptotic curve then 
it is a straight line.

Show that if a geodesic is also a line of curvature then it is a plane 
curve.

2. Suppose y is a geodesic and that P  is a point on y. Prove that if 
a point Q on the geodesic is sufficiently close to P, then the 
segment PQ on y will be a shortest curve in comparison with all the 
rectifiable curves (and not only with the piecewise smooth curves) 
which join the points P  and Q on the surface.

Prove that the segment PQ on the geodesic y is the only shortest 
curve, joining the points P  and Q on the surface, if the point Q is 
sufficiently close to P.

3. Prove that a point P  on a regular surface has a neighborhood 
in which a semigeodesic parametrization can be introduced starting 
with any geodesic which passes through P.

4. Using the two preceding theorems, prove that any shortest 
curve on a regular surface is a geodesic.

5. Prove the whatever the neighborhood Q of the point P  on a 
regular surface one can always find a neighborhood co in Q such



164 C h a p t e r  IX, § 6

that any two points in the neighborhood co can be joined by a 
shortest curve in the interior of Q.

6. Prove that on a complete surface any two points can be joined 
by a shortest curve.

7. Show that the equation of geodesics in the case of semigeodesic 
parametrization (ds2 =  du2 +  Gdv2) can be written in the form

da. _  _  dVG 
dv du ’

where a is the angle at which the geodesics intersect the curves 
v =  constant.

8. Show that if the curve y on a surface defined by the equations 
u = u(a), v = v(a), undergoes a deformation and goes over at time t 
into the curve u =  u{a) +  X{a)t,v =  v(a) +  ft{a)t, then the variation 
of the arc of the curve y subjected to this condition is

v
where 0  =  (Eu'2 -f- 2Fu'v' +  Gv'2)i and 0(t2) denotes the part of ds 
having order greater than or equal to t2.

Carrying out the integration by parts and assuming that the 
endpoints of the curve y remain fixed under the deformation, show 
that

d /d & \\  , C( d& d (  d&Wa ~ *  b ) J  +  ‘ J ( v  -  s  (w) )  ̂ + 0 (,s>-
y r

9. Taking the property of geodesics of being shortest curves on a 
sufficiently small portion of a surface as point of departure, show 
that the equations of the geodesics can be written in the form

d& d /  d& \  80 d /  80 \
du da \  du' / ' dv da \  dv' )

where 0  =  {Eu'2 +  2Fu'v' +  Gv'2)K In particular, if

0  =  V 1 +  Gv'2, 
the equation of the geodesics will be

\Gvv'2 d (  Gv' ^ _  n
V l +  Gv'2 du V V l +  Gv'2 /
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10. Show that the geodesic curves on a surface of revolution can 
be found by quadratures.

Hi. Show that the equations of geodesics for surfaces with linear 
element

ds2 = (U(u) +  V{v)){du2 +  dv2)

(these surfaces are called Liouville surfaces) can be written in the 
form

Udv2 -  Vdu2 \----------------- ) =  0,
du2 -f- dv2 j

It follows from this that the geodesic curves on Liouville surfaces are 
found by quadratures. Namely, we have

r du r dv
J V c T - T  _  ±  J VV+~c +  C l '

112. Prove that second degree surfaces are Liouville surfaces. The 
coordinate net, with respect to which the linear element has the 
form

ds2 =  (U -f V){du2 +  dv2),

consists of lines of curvature (see Problem 93, Chapter VII).
121. Show that in a neighborhood of an arbitrary point P  on a 

regular surface one can introduce a semigeodesic parametrization 
w, v, which is distinguished as follows. The w-curves are geodesics 
passing through the point P, and the w-curves are geodesic circum­
ferences with center P. If the parameters arc taken as u, the geodesic 
distance from P, and v, the angle formed by the geodesic with some 
fixed direction at the point P, then the linear element on the surface 
assumes the form

ds2 =  du2 -f- Gdv2.

When u ^ O .G ^ O ,  (VG)U 1, -  K(P), where K(P)
Vg

is the Gaussian curvature at P.
122. Suppose l(r) is the length of the geodesic circumference with 

center at the point P on the surface and radius r. Prove that
2 7ir — l{r) 

0 r3 y * (P)’
where K(P) is the Gaussian curvature at the point P.
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13. Show that the geodesic curves on a surface with linear 
element

ds2 =
du2 +  dv2 

(u2 -f- v2 +  c)2
are

ecu +  +  y =  0 (a, /?, y are constants).

14i. Show that the equation

, ,  <Pvv — v -\-------v
’fu

' 3  , 2<PUV v> +
<Puu

<Pu
v' =;o

is satisfied by
v =  C19? +  C2 (ci, C2 are constants).

142. Show that if the equation of the geodesics in semigeodesic 
coordinates

v" +  IGv'3 — v'2 + =  0

has an integral of the form

V =  Cl<p{u,  v )  +  c2,

where c\ and C2 are arbitrary constants, then G =  U(u) V(v), and, 
consequently, the Gaussian curvature of a surface along a t^-curve is 
constant.

H 3. The mapping of one surface onto another is said to be 
geodesic if under this mapping the geodesics of one surface corre­
spond to the geodesics on the other. It follows from Problems I2, 
Chapter VIII, and 13, Chapter IX, that surfaces with constant 
Gaussian curvature permit geodesic mappings onto a plane.

Prove that the only surfaces which possess this property are those 
with constant Gaussian curvature (Beltrand’s theorem).

15i. Suppose two points A and B are taken on the geodesic y 
passing near the point 0  on a surface; suppose ■& is the angle of the 
geodesic triangle A OB at the vertex 0  and that a is the corresponding 
angle of the plane triangle with the corresponding sides. Show that

a
where a is the area of the geodesic triangle and K* approximates the
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Gaussian curvature of the surface at the point 0, if the triangle is 
sufficiently small.

152- Suppose A is a geodesic triangle, containing the point P, on a 
surface. Suppose #i, #2, #3 are the angles of this triangle and that 
ai, a2, as are the angles of the corresponding plane triangle (see the 
preceding problem). Prove that the three ratios

# 1  —  a i  $ 2  —  “ 2  $ 3  —  a 3
# ja a a

tend to the common limit $K(P) when the triangle A shrinks to the 
point P  (Darboux’s theorem).

16. The surfaces P i and F2 are called the surfaces of centers of 
the surface P  if they are formed by the endpoints of segments of 
lengths l/&i and I/&2 (ki and kz are the principal curvatures of P), 
marked off on the normals to the surface P. A point correspondence 
is established in a natural way between the surfaces Pi, P 2 and P. 
Namely, points on the surfaces lying on the same normal to P  are 
corresponding points. Prove that geodesic curves on the surfaces of 
centers correspond to lines of curvature on the surface P.
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